利用建筑数据跨领域学习实现精准交通预测
在交通领域,准确预测交通流量对于城市规划、交通管理等方面至关重要。本文将介绍一种利用建筑传感数据进行跨领域学习的交通流量预测方法,以及相关模型的性能评估。
1. 问题提出
我们的目标是通过应用建筑传感数据和历史交通流量数据来预测交通流量。假设在T个时间间隔内有N种建筑传感数据,以下是相关的符号表示:
- 建筑数据类型 :建筑物的物联网传感器会生成N种用于交通预测的传感数据,其中包括No种占用传感数据(例如覆盖不同公共区域)和Ne种环境传感数据(例如室内环境和室外环境数据),显然N = No + Ne。
- 建筑传感数据 :用$x_t(i)$表示时间t的第i种建筑传感数据,$x_t = {x_t(i)|1 ≤ i ≤ N}$表示时间t所有建筑传感数据的向量。相应地,$X_{[1:T]} = [x_1, x_2, …, x_T]^{T×n}$表示T个时间间隔内所有建筑数据的测量矩阵。
- 交通流量数据 :用$y_t$表示目标路段在时间t的交通流量,$1 ≤ t ≤ T - 1$。相应地,$y_{[1:T - 1]}$表示目标路段在T - 1个时间间隔内的历史交通流量向量,其中$y = {y(j)|1 ≤ j ≤ T - 1}$。
- 未来交通流量 :目标道路的预测交通流量表示为$\hat{Y} {[T:T + τ]} = {y(j)|T ≤ j ≤ T + τ}$,同时用$Y {[T:T + τ]}$表示其真实值,其中τ是预测的时间间隔。