19、无人机航时联合分配算法性能分析与实验评估

无人机航时联合分配算法性能分析与实验评估

1. 算法性能分析

1.1 RT - alg 算法

RT - alg 算法能够在多项式时间复杂度 $O((IJ)^6 K \lg(IJ) \lg K)$ 内,以 $\frac{1}{4}+\varepsilon$($\varepsilon > 0$)的近似比获得近似最优解,其中 $I$、$J$ 和 $K$ 分别表示配送点(DG)的数量、可行路线的数量和任务的数量。

证明过程基于以下三个基本思路:
1. 分区拟阵约束与可行解获取 :分区拟阵约束使得通过 $p$ - 交换局部搜索获取可行解成为可能。因为分区拟阵的约束具有分区基交换性质,对于一组可行路线,总能找到另一组可行路线,它们之间最多交换 $p$ 条路线后仍能得到两个可行解。添加或删除路线可视为路线与空集 $\varnothing$ 的交换。
2. 局部最优解的效用下限 :内循环中的局部最优解 $S$ 有一个效用下限,但不能保证近似比。通过多次路线交换可以从局部最优解 $S$ 得到全局最优解 $C$,利用目标函数的次模性,在每次交换路线的并集和差集后,可以得到一个基于特定等式的不等式。然而,由于目标函数是非单调的,需要进一步扩展求解。
3. 外循环搜索与近似比提升 :外循环中搜索多个局部最优解可以提高效用,从而获得具有近似比的近似最优解。在获得 $N_c$ 个局部最优解中的最佳解后,根据相关等式可以得到不等式,进而证明该算法的近似比为 $\frac{1}{4}+\varepsilon$。

最后,分析 RT - alg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值