实践:动手搭建神经机器翻译模型

本文介绍了如何动手搭建神经机器翻译模型,包括数据预处理、建立模型、定义损失函数和优化器。使用ManyThings.org的英语-法语数据集,通过Encoder-Decoder LSTM结构,解释了序列表示、词嵌入、训练与推断过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们现在几乎每天都会用到翻译软件,无论是看论文看源码看新闻,总是会遇见一些不熟悉不认识的单词,关于机器翻译背后的原理我们在前一篇文章中已经讲到了,今天就来动手实践一下。

在这个例子中我们会用一个很小的数据集来理解一遍流程,接下来主要会有两大步骤,一个是 NMT 的训练,一个是 NMT 的推断预测。

NMT 的训练步骤:

  1. 序列的表示:主要是将文本转化为序列数据。
  2. 词嵌入:用一个低维向量浓缩表达每个单词,使用嵌入层来实现。
  3. 训练 Encoder:输入数据进入编码器,学习出隐藏状态。
  4. 连接 Encoder 和 Decoder:Encoder 的最终隐藏状态作为 Decoder 的初始状态。
  5. 训练 Decoder:Decoder 的作用是给出目标序列的一个词,可以预测出下一个词。

不过训练好的 NMT 不能直接用来翻译新的数据,因为这时并不知道目标句子是什么,所以翻译的流程和训练的流程有些不同。

NMT 的推断预测:

  1. 序列的表示:主要是将文本转化为序列数据。
  2. 词嵌入:用一个低维向量浓缩表达每个单词,使用嵌入层来实现。
  3. Encoder:将预处理好的数据输入进编码器学习隐藏状态。
  4. 连接 Encoder 和 Decoder:Encoder 的最终隐藏状态作为 Decoder 的初始状态。
  5. Decoder 预测:解码器的初始输入除了上面的状态向量,还有一个开始标记 <start>,然后可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值