一文掌握 Keras

本文介绍了使用 Keras 解决深度学习问题的流程,包括搭建 MNIST 手写数字识别模型,模型改进如 dropout 和正则化,以及 Keras 中常用模块的简介,如 Dense、Dropout、Embedding 等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们来学习一下 Keras。

Keras 是一个用 Python 编写的高级神经网络 API,能够用 TensorFlow 或者 Theano 作为后端运行。是由 Francois Chollet 在 Google 工作时开发的,用于构建深度学习模型。

Keras 是为了实现快速实验和快速原型设计的,让开发者能够用最短的时间把想法转换为实验结果。用 Keras 可以非常快速地上手深度学习,搭建各种神经网络,现在在工业界和学术界都被广泛地采用。

我们这门课程的主体是学习用 TensorFlow 来解决问题,但是在一些比较复杂问题的实战应用上,我们会采用 Keras 来实现,这样可以让项目快速落地。

本文结构:

  1. 用 Keras 解决深度学习问题的一般流程
  2. 用 Keras 识别 MNIST 数据集
  3. 模型的改进
  4. Keras 中常用模块简介

1. 用 Keras 解决深度学习问题的一般流程

关于安装,我们可以从官网找到各种方法,这里就不赘述:https://keras.io/zh/#_2

接下来我们用一个例子来看如何用 Keras 搭建神经网络并解决问题。

首先,用 Keras 解决深度学习问题的一般流程可以分为 8 个步骤,如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值