一文掌握 TensorFlow 基础

本文是 TensorFlow 入门教程,介绍了 TensorFlow 的核心概念,包括图(Graph)、Tensor、Operation、Placeholder、Variable 和 Session。文章通过实例演示了如何定义和执行计算图,解释了 Tensor 的 shape、Variable 的初始化和更新,以及使用 Feed 和 Fetch。同时,提到了 TensorBoard 的使用和 Name Scope 的管理,帮助理解 TensorFlow 的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在后面的课程中我们将主要使用 TensorFlow 来实现各种模型的应用,所以在本节我们先来看一下 TensorFlow 的基础知识点。

TensorFlow 是一个深度学习库,由 Google 开源,可以对定义在 Tensor(张量)上的函数自动求导。

Tensor(张量)意味着 N 维数组,Flow(流)意味着基于数据流图的计算,TensorFlow 即为张量从图的一端流动到另一端。

它的一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从手机、单个CPU / GPU到成百上千GPU卡组成的分布式系统。支持 CNN、RNN 等主流算法,是目前在图像和自然语言处理中最流行的深度学习库。

接下来我们将对 TensorFlow 的一些核心概念展开学习。

本文结构:

  • TensorFlow 的代码结构
  • 1. 图 Graph
    • 1.1 图的定义
    • 1.2 建立图
    • 1.3 运行图:会话 session
      • 1.3.1 fetches
  • 2. Tensor 和 Operation
    • 2.1 Tensor
      • 2.1.1 tensor 的 shape
    • 2.2. Operations
    • 2.3. Placeholder
      • 2.3.1. Feed
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值