一、核心概念与定位
RAG 是一种将 检索(Retrieval) 与 生成(Generation) 相结合的架构,旨在解决传统语言模型(如 GPT 系列)在处理需要 外部知识 的任务时的局限性。
- 传统模型的痛点:依赖预训练数据中的知识,难以处理动态、实时或冷启动知识,且可能产生 “幻觉”(生成错误信息)。
- RAG 的核心逻辑:通过检索外部知识库(如文档、数据库)获取相关信息,再结合语言模型生成回答,实现 “先检索,后生成” 的闭环。</
RAG 是一种将 检索(Retrieval) 与 生成(Generation) 相结合的架构,旨在解决传统语言模型(如 GPT 系列)在处理需要 外部知识 的任务时的局限性。