(一)图(Graph)

本文介绍了图(Graph)的基本概念,包括顶点和边,以及无向图、有向图等术语。文章详细阐述了图的抽象数据类型定义,并列举了常用的操作,如深度优先遍历、广度优先遍历、最短路径计算和最小生成树的构建。接着,对比了邻接矩阵和邻接表两种图的表示方法,讨论了它们的优缺点。最后,提到了代码实现部分,涉及邻接矩阵和邻接表的实现。

(一)图(Graph)

1. 什么是图

  • 表示“多对多”的关系
  • 包含
    • 一组顶点:通常用 V(Vertex) 表示顶点集合
    • 一组边:通常用E (Edge) 表示边的集合
      • 边是顶点对: (v,w)∈E(v, w)\in E(v,w)E, 其中v,w∈Vv, w \in Vv,wV
      • 有向边&lt;v,w&gt;&lt;v, w&gt;<v,w>表示vvv指向www的边(单边线)
      • 不考虑重边和自回路

2. 抽象数据类型定义

类型名称:图(Graph)

数据对象集:G(V,E)G(V, E)G(V,E)由一个非空的有限顶点集合 VVV 和一个有限边集合 EEE 组成

操作集:对于任意图G∈GraphG\in GraphGGraph,以及v∈V,e∈Ev\in V, e\in EvV,eE

  • Graph Create(): 建立并返回空图

  • Graph InsertVertex (Graph G, Vertex v): 将v插入G

  • Graph InsetEdge (Graph G, Edge e): 将e插入G

  • void DFS (Graph G, Vertex v): 从顶点v出发深度优先遍历图

  • void BFS (Graph G, Vertex v): 从顶点v出发广度优先遍历图

  • void ShortestPath (Graph G, Vertex v, int Dist[]):

    计算图G中顶点v到任意其他顶点的最短距离

  • void MST (Graph G):计算图G的最小生成树

3. 常见术语

无向图、有向图、网络…

4. 表示一个图

  • 邻接矩阵

[外链图片转存失败(img-q7FVyJvf-1567356340202)(C:\Users\alway\AppData\Roaming\Typora\typora-user-images\1567340257441.png)]

  • 对于无向图,邻接矩阵是对称矩阵,即可采用只存储下三角来省一半空间。

用一个长度N(N+1)/2N(N+1)/2N(N+1)/2 的1维数组A存储{G00,G10,G11,...,Gn−1,0,...Gn−1,n−1}\{G_{00}, G_{10}, G_{11},...,G_{n-1,0},...G_{n-1 ,n-1}\}{G00,G10,G11,...,Gn1,0,...Gn1,n1}

GijG_{ij}Gij在A中对应的下标是:(i∗(i+1)/2+j)(i*(i+1)/2+j)(i(i+1)/2+j)

  • 对于网络,只要把G[i][j]G[i][j]G[i][j]的值定义为边&lt;vi,vj&gt;&lt;v_i, v_j&gt;<vi,vj>的权重即可,没有边值取-1

  • 优点
  1. 直观、简单、好理解
  2. 方便检查任一对顶点间是否存在边
  3. 方便找任一顶点的所有“邻接点”
  4. 方便计算任一顶点的“度”(“入度”与“出度”)
  • 缺点
  1. 浪费空间—适合于稠密图
  2. 浪费时间—统计稀疏图一共有多少条边
  • 邻接表

    [外链图片转存失败(img-3f6oyABG-1567356340203)(C:\Users\alway\AppData\Roaming\Typora\typora-user-images\1567344852820.png)]

  • 优点/缺点
    1. 方便找任一顶点的所有“邻接点”
    2. 节省稀疏图的存储空间
      • 需要N个头指针+2E个结点(每个结点至少两个域)
    3. 计算任一顶点的“度”?
      • 对无向图:方便
      • 对有向图:***只能计算"出度"***, 需要构造“逆邻接表”(存指向自己的边)来计算“入度”
    4. 检查一对顶点间是否存在边?NO

4. 代码实现

1. 邻接矩阵

/* 图的邻接矩阵表示法 */
 
#define MaxVertexNum 100    /* 最大顶点数设为100 */
#define INFINITY 65535        /* ∞设为双字节无符号整数的最大值65535*/
typedef int Vertex;         /* 用顶点下标表示顶点,为整型 */
typedef int WeightType;        /* 边的权值设为整型 */
typedef char DataType;        /* 顶点存储的数据类型设为字符型 */
 
/* 边的定义 */
typedef struct ENode *PtrToENode;
struct ENode{
    Vertex V1, V2;      /* 有向边<V1, V2> */
    WeightType Weight;  /* 权重 */
};
typedef PtrToENode Edge;
        
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;  /* 顶点数 */
    int Ne;  /* 边数   */
    WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
    DataType Data[MaxVertexNum];      /* 存顶点的数据 */
    /* 注意:很多情况下,顶点无数据,此时Data[]可以不用出现 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
 
 
 
MGraph CreateGraph( int VertexNum )
{ /* 初始化一个有VertexNum个顶点但没有边的图 */
    Vertex V, W;
    MGraph Graph;
     
    Graph = (MGraph)malloc(sizeof(struct GNode)); /* 建立图 */
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    /* 初始化邻接矩阵 */
    /* 注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) */
    for (V=0; V<Graph->Nv; V++)
        for (W=0; W<Graph->Nv; W++)  
            Graph->G[V][W] = INFINITY;
             
    return Graph; 
}
        
void InsertEdge( MGraph Graph, Edge E )
{
     /* 插入边 <V1, V2> */
     Graph->G[E->V1][E->V2] = E->Weight;    
     /* 若是无向图,还要插入边<V2, V1> */
     Graph->G[E->V2][E->V1] = E->Weight;
}
 
MGraph BuildGraph()
{
    MGraph Graph;
    Edge E;
    Vertex V;
    int Nv, i;
     
    scanf("%d", &Nv);   /* 读入顶点个数 */
    Graph = CreateGraph(Nv); /* 初始化有Nv个顶点但没有边的图 */ 
     
    scanf("%d", &(Graph->Ne));   /* 读入边数 */
    if ( Graph->Ne != 0 ) { /* 如果有边 */ 
        E = (Edge)malloc(sizeof(struct ENode)); /* 建立边结点 */ 
        /* 读入边,格式为"起点 终点 权重",插入邻接矩阵 */
        for (i=0; i<Graph->Ne; i++) {
            scanf("%d %d %d", &E->V1, &E->V2, &E->Weight); 
            /* 注意:如果权重不是整型,Weight的读入格式要改 */
            InsertEdge( Graph, E );
        }
    } 
 
    /* 如果顶点有数据的话,读入数据 */
    for (V=0; V<Graph->Nv; V++) 
        scanf(" %c", &(Graph->Data[V]));
 
    return Graph;
}

2. 邻接表

/* 图的邻接表表示法 */
 
#define MaxVertexNum 100    /* 最大顶点数设为100 */
typedef int Vertex;         /* 用顶点下标表示顶点,为整型 */
typedef int WeightType;        /* 边的权值设为整型 */
typedef char DataType;        /* 顶点存储的数据类型设为字符型 */
 
/* 边的定义 */
typedef struct ENode *PtrToENode;
struct ENode{
    Vertex V1, V2;      /* 有向边<V1, V2> */
    WeightType Weight;  /* 权重 */
};
typedef PtrToENode Edge;
 
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;        /* 邻接点下标 */
    WeightType Weight;  /* 边权重 */
    PtrToAdjVNode Next;    /* 指向下一个邻接点的指针 */
};
 
/* 顶点表头结点的定义 */
typedef struct Vnode{
    PtrToAdjVNode FirstEdge;/* 边表头指针 */
    DataType Data;            /* 存顶点的数据 */
    /* 注意:很多情况下,顶点无数据,此时Data可以不用出现 */
} AdjList[MaxVertexNum];    /* AdjList是邻接表类型 */
 
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;     /* 顶点数 */
    int Ne;     /* 边数   */
    AdjList G;  /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
 
 
 
LGraph CreateGraph( int VertexNum )
{ /* 初始化一个有VertexNum个顶点但没有边的图 */
    Vertex V;
    LGraph Graph;
     
    Graph = (LGraph)malloc( sizeof(struct GNode) ); /* 建立图 */
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    /* 初始化邻接表头指针 */
    /* 注意:这里默认顶点编号从0开始,到(Graph->Nv - 1) */
       for (V=0; V<Graph->Nv; V++)
        Graph->G[V].FirstEdge = NULL;
             
    return Graph; 
}
        
void InsertEdge( LGraph Graph, Edge E )
{
    PtrToAdjVNode NewNode;
     
    /* 插入边 <V1, V2> */
    /* 为V2建立新的邻接点 */
    NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
    NewNode->AdjV = E->V2;
    NewNode->Weight = E->Weight;
    /* 将V2插入V1的表头 */
    NewNode->Next = Graph->G[E->V1].FirstEdge;
    Graph->G[E->V1].FirstEdge = NewNode;
         
    /* 若是无向图,还要插入边 <V2, V1> */
    /* 为V1建立新的邻接点 */
    NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
    NewNode->AdjV = E->V1;
    NewNode->Weight = E->Weight;
    /* 将V1插入V2的表头 */
    NewNode->Next = Graph->G[E->V2].FirstEdge;
    Graph->G[E->V2].FirstEdge = NewNode;
}
 
LGraph BuildGraph()
{
    LGraph Graph;
    Edge E;
    Vertex V;
    int Nv, i;
     
    scanf("%d", &Nv);   /* 读入顶点个数 */
    Graph = CreateGraph(Nv); /* 初始化有Nv个顶点但没有边的图 */ 
     
    scanf("%d", &(Graph->Ne));   /* 读入边数 */
    if ( Graph->Ne != 0 ) { /* 如果有边 */ 
        E = (Edge)malloc( sizeof(struct ENode) ); /* 建立边结点 */ 
        /* 读入边,格式为"起点 终点 权重",插入邻接矩阵 */
        for (i=0; i<Graph->Ne; i++) {
            scanf("%d %d %d", &E->V1, &E->V2, &E->Weight); 
            /* 注意:如果权重不是整型,Weight的读入格式要改 */
            InsertEdge( Graph, E );
        }
    } 
 
    /* 如果顶点有数据的话,读入数据 */
    for (V=0; V<Graph->Nv; V++) 
        scanf(" %c", &(Graph->G[V].Data));
 
    return Graph;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值