目标检测 RetinaNet

本文深入解析了获得ICCV最佳学生论文奖的Focal Loss,一种针对密集目标检测问题的有效损失函数。介绍了其在RetinaNet中的实现,并提供了Caffe2、Keras和Pytorch的开源代码资源。通过知乎和CSDN的深度解读,帮助读者理解Focal Loss如何解决类别不平衡问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值