C#调用C#dll 和 调用C++ dll的方法-----动态调用。

本文详细介绍了如何在C#.NET Core中调用C++动态链接库(DLL)。通过DllImport特性实现C++接口的 extern static 方法,并使用Marshal类进行内存管理和类型转换,特别讨论了字符串和复杂类型参数的处理。示例代码展示了从加载DLL到执行方法的完整过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遇到一个C# .net core里调用C++ dll的案例。

通常情况下,C#调用 C# 库的方式是通过引用加入。或者如果是动态调用,可以用下面的代码:

//先声明dll对象
private Object dllObj;

//再声明 Method
private MethodInfo method;

//调用方法:
Assembly ass = Assembly.LoadFrom("./{dll文件名}");
Type type = ass.GetType("{命名空间}.{dll里的类名}");
dllObj = Activator.CreateInstance(type);
method = type.GetMethod("{类里面的接口名称}");

//执行
String strResult = (String)method.Invoke(dllObj, new Object[] {接口参数 });

 

如果是调用C++库,既不能直接引入,也不能用上面的代码,调用方式如下:

 [DllImport("{dll文件}.dll", CallingConvention = CallingConvention.Cdecl)]
 public extern static int Method(IntPtr value);

对于String 或简单类型,直接传递没问题。但是对于回写的参数,需要用到IntPtr类型。大致用到的方法:

1  声明并初始化: IntPtr ptrTemp = Marshal.AllocHGlobal(100);

2  释放空间,对于手动分配的空间,要手动释放:Marshal.FreeHGlobal(ptrTemp);

3  赋值:比如一个简单的数组:byte[] da = {0xFF, 0xAA. 0xBB};
                                                   IntPtr ptr = Marshal.AllocHGlobal(da.Length);
                                                   Marshal.Copy(da, 0, ptr, da.Length);

4 回写的值转为字符串: Marshal.PtrToStringAnsi(ptrTemp).Trim();

 

 

### 回答1: GMM-EM算法的伪代码:// 迭代k次 for (k=0; k<K; k++) { // E步骤 // 计算每个样本属于每个模型的概率 for (i=0; i<N; i++) { for (j=0; j<M; j++) { p[i][j] = pi[j]*Gaussian(x[i],mu[j],sigma[j]); } } // 计算每个样本属于每个模型的期望值 for (i=0; i<N; i++) { for (j=0; j<M; j++) { q[i][j] = p[i][j]/sigma[j]; } } // M步骤 // 更新模型参数 for (j=0; j<M; j++) { pi[j] = pi[j] + q[i][j]; mu[j] = mu[j] + q[i][j]*x[i]; sigma[j] = sigma[j] + q[i][j]*(x[i] - mu[j])*(x[i] - mu[j]); } } ### 回答2: GMM-EM(高斯混合模型期望最大化)算法是一种用于估计高斯混合模型参数的迭代优化算法。下面是GMM-EM算法的伪代码: 输入:观测数据X,高斯分量个数K 输出:高斯混合模型的参数 1. 初始化高斯混合模型参数: - 初始化每个高斯分量的均值向量mu_k,协方差矩阵sigma_k和混合系数pi_k - 使用随机值或者其他预设的初始值进行初始化 2. 迭代优化: - 重复以下步骤,直到收敛: 1. Expectation 步骤: - 计算每个样本属于每个高斯分量的后验概率gamma(z_{nk}),即样本x_n由高斯分量k生成的概率 - 使用当前的参数值计算gamma(z_{nk}),即根据当前参数估计后验概率 2. Maximization 步骤: - 更新均值向量mu_k: - 对于每个高斯分量k,计算新的均值mu_k: - mu_k = (sum_n(gamma(z_{nk})*x_n)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和 - 更新协方差矩阵sigma_k: - 对于每个高斯分量k,计算新的协方差矩阵sigma_k: - sigma_k = (sum_n(gamma(z_{nk})*(x_n - mu_k)*(x_n - mu_k).T)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和,.T表示矩阵的转置操作 - 更新混合系数pi_k: - 对于每个高斯分量k,计算新的混合系数pi_k: - pi_k = sum_n(gamma(z_{nk})) / N 其中,sum_n表示对所有样本求和,N为样本总数 3. 返回最终的高斯混合模型参数 GMM-EM算法通过交替进行Expectation步骤和Maximization步骤,迭代地优化高斯混合模型的参数,直到收敛到最优参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值