
开源项目
文章平均质量分 78
Amusi(CVer)
欢迎关注微信公众号:CVer
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Colorization Transformer
首个用于高分辨率图像着色的Transformer网络!表现SOTA!性能优于PixColor、cGAN等网络,代码刚刚开源!近期又有一波视觉Transformer的工作,比如:TransUNet:用于医学图像分割的Transformers强大编码器TransReID:首个基于Transformer的目标Re-ID注1:文末附【Transformer】和【医疗影像】交流群注2:整理不易,欢迎点赞,支持分享!Colorization Transformer作者单位:谷歌大脑代码:https原创 2021-02-17 21:37:50 · 1662 阅读 · 0 评论 -
谷歌提出ColTran:Colorization Transformer
首个用于高分辨率图像着色的Transformer网络!表现SOTA!性能优于PixColor、cGAN等网络,代码刚刚开源!近期又有一波视觉Transformer的工作,比如:TransUNet:用于医学图像分割的Transformers强大编码器TransReID:首个基于Transformer的目标Re-ID注1:文末附【Transformer】和【医疗影像】交流群注2:整理不易,欢迎点赞,支持分享!Colorization Transformer作者单位:谷歌大脑代码:https原创 2021-02-17 21:36:42 · 807 阅读 · 2 评论 -
DeepMind重新设计高性能ResNet!无需激活归一化层
本文提出Normalizer-Free方法,可设计没有激活归一化层的深度残差网络!其能直接应用于ResNet、RegNet等网络,相同FLOP预算下,可比肩EfficientNet!代码已开源!注1:文末附【计算机视觉细分垂直方向】交流群(含检测、分割、跟踪、医疗、GAN、Transformer等)注2:整理不易,欢迎点赞,支持分享!Characterizing signal propagation to close the performance gap in unnormalized ResNet原创 2021-02-17 16:09:33 · 363 阅读 · 0 评论 -
T2T-ViT:在ImageNet上从头训练视觉Transformer
本文提出一种新的Tokens到Token 视觉Transformer(T2T-ViT)!性能更快更强,将原始ViT的参数和MAC减少200%,性能优于ViT、ResNet等网络,代码刚刚开源!昨天才推了一个CNN+Transformer的新backbone:CNN+Transformer!谷歌提出BoTNet:新主干网络!在ImageNet上达84.7%,今天又来了一个新工作,CV圈太内卷了!不过这篇论文中并没有在目标检测、实例分割等下游任务上的充足实验数据,如果加上相关分析就更好了,毕竟现在"back原创 2021-01-29 23:32:44 · 4838 阅读 · 4 评论 -
CVPR2021最全论文合集
CVPR2021-CodeCVPR 2021 论文开源项目(paper with code)合集,持续更新中,请访问:https://github.com/amusi/CVPR2021-Code注1:等 February 28, 2021 开奖后,欢迎各位大佬提交issue,分享CVPR 2021论文和开源项目!注2:CVPR 2021交流群已成立!已投稿且想要进群的同学,可以添加微信:CVer9999,请备注:CVPR2021已投稿+姓名+学校/公司名称!一定要根据格式申请!【推荐阅读】CV原创 2021-01-25 18:53:12 · 13755 阅读 · 2 评论 -
CVPR2021论文开源项目大盘点
CVPR2021-CodeCVPR 2021 论文开源项目(paper with code)合集,持续更新中,请访问:https://github.com/amusi/CVPR2021-Code注1:等 February 28, 2021 开奖后,欢迎各位大佬提交issue,分享CVPR 2021论文和开源项目!注2:CVPR 2021交流群已成立!已投稿且想要进群的同学,可以添加微信:CVer9999,请备注:CVPR2021已投稿+姓名+学校/公司名称!一定要根据格式申请!【推荐阅读】CV原创 2021-01-25 18:51:54 · 1220 阅读 · 1 评论 -
FaceX-Zoo: A PyTocrh Toolbox for Face Recognition
该框架面向人脸识别的研究开发社区。依靠高度模块化和可扩展的设计,FaceX-Zoo提供了一个训练模块,具有各种heads和骨干,以实现最新的人脸识别,以及标准化的评估模块。仅需简单地编辑配置即可获得流行的基准。此外,还提供了一个功能齐全的人脸SDK,用于验证模型和应用。代码即将开源!注1:文末附【人脸识别】交流群FaceX-Zoo: A PyTocrh Toolbox for Face Recognition作者单位:京东AI研究院(梅涛等人)代码(还没放出来):https://github.原创 2021-01-23 23:00:52 · 6412 阅读 · 0 评论 -
京东AI发布FaceX-Zoo:用于人脸识别的PyTorch工具箱
该框架面向人脸识别的研究开发社区。依靠高度模块化和可扩展的设计,FaceX-Zoo提供了一个训练模块,具有各种heads和骨干,以实现最新的人脸识别,以及标准化的评估模块。仅需简单地编辑配置即可获得流行的基准。此外,还提供了一个功能齐全的人脸SDK,用于验证模型和应用。代码即将开源!注1:文末附【人脸识别】交流群FaceX-Zoo: A PyTorh Toolbox for Face Recognition作者单位:京东AI研究院(梅涛等人)代码(还没放出来):https://github.c原创 2021-01-23 22:59:55 · 1251 阅读 · 1 评论 -
Fully Convolutional Networks for Panoptic Segmentation
表现SOTA!性能优于Panoptic-DeepLab、AdaptIS和PCV等网络,代码现已开源!注1:文末附【计算机视觉细分垂直方向】交流群(含检测、分割、跟踪、医疗、GAN、Transformer等)Fully Convolutional Networks for Panoptic Segmentation作者单位:港中文(贾佳亚团队), 牛津大学, 港大, 旷视(孙剑等)代码:yanwei-li/PanopticFCN论文:Fully Convolutional Networks fo原创 2021-01-06 18:40:56 · 1469 阅读 · 0 评论 -
港中文&旷视提出PanopticFCN:用于全景分割的全卷积网络
表现SOTA!性能优于Panoptic-DeepLab、AdaptIS和PCV等网络,代码现已开源!注1:文末附【计算机视觉细分垂直方向】交流群(含检测、分割、跟踪、医疗、GAN、Transformer等)Fully Convolutional Networks for Panoptic Segmentation作者单位:港中文(贾佳亚团队), 牛津大学, 港大, 旷视(孙剑等)代码:yanwei-li/PanopticFCN论文:Fully Convolutional Networks fo原创 2021-01-06 18:40:22 · 1030 阅读 · 1 评论 -
YolactEdge: Real-time Instance Segmentation on the Edge (Jetson AGX Xavier: 30 FPS, RTX 2080 Ti: 170
带有ResNet-101的YolactEdge在Jetson AGX Xavier上的速度高达30.8 FPS,在RTX 2080 Ti上的速度为172.7 FPS,AP性能超强!速度是目前主流方法的3-5倍,代码于1小时前刚刚开源!注:文末附【图像分割】学习交流群YolactEdge: Real-time Instance Segmentation on the Edge (Jetson AGX Xavier: 30 FPS, RTX 2080 Ti: 170 FPS)作者单位:UC Davis,原创 2020-12-23 13:54:16 · 1660 阅读 · 1 评论 -
YolactEdge:边缘设备上的实时实例分割(Xavier: 30 FPS, RTX 2080 Ti:170 FPS)
带有ResNet-101的YolactEdge在Jetson AGX Xavier上的速度高达30.8 FPS,在RTX 2080 Ti上的速度为172.7 FPS,AP性能超强!速度是目前主流方法的3-5倍,代码于1小时前刚刚开源!注:文末附【图像分割】学习交流群YolactEdge: Real-time Instance Segmentation on the Edge (Jetson AGX Xavier: 30 FPS, RTX 2080 Ti: 170 FPS)作者单位:UC Davis,原创 2020-12-23 13:53:42 · 1319 阅读 · 1 评论 -
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation
表现SOTA!HyperSeg 有S、M和L版本,其中M版本在Cityscapes上可达76.2 mIoU / 36.9 FPS!性能优于BiSeNetV2、SwiftNet和DFANet等,代码即将开源!注:文末附语义分割交流群HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation论文下载链接:https://arxiv.org/abs/2012.11582作者单位:Facebook AI, 特拉维夫大原创 2020-12-22 11:07:24 · 1943 阅读 · 0 评论 -
HyperSeg:实时语义分割的逐块超网络
表现SOTA!HyperSeg 有S、M和L版本,其中M版本在Cityscapes上可达76.2 mIoU / 36.9 FPS!性能优于BiSeNetV2、SwiftNet和DFANet等,代码即将开源!注:文末附语义分割交流群HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation论文下载链接:https://arxiv.org/abs/2012.11582作者单位:Facebook AI, 特拉维夫大原创 2020-12-22 11:06:47 · 2828 阅读 · 0 评论 -
Equalization Loss v2 长尾目标检测新网络
本文揭示了长尾目标检测中的主要问题是正负之间的梯度不平衡,并提出均衡损失(equalization loss)v2 表现SOTA!性能优于BAGS、Forest R-CNN等网络,代码即将开源!注:文末附【目标检测】学习交流群Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection作者单位:同济大学, 商汤科技, 清华大学论文:https://arxiv.org/abs/2012.0原创 2020-12-20 18:52:38 · 1235 阅读 · 0 评论 -
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection
本文揭示了长尾目标检测中的主要问题是正负之间的梯度不平衡,并提出均衡损失(equalization loss)v2 表现SOTA!性能优于BAGS、Forest R-CNN等网络,代码即将开源!注:文末附【目标检测】学习交流群Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection作者单位:同济大学, 商汤科技, 清华大学论文:https://arxiv.org/abs/2012.0原创 2020-12-20 18:51:48 · 1000 阅读 · 0 评论 -
TinaFace人脸检测新网络!刷新WIDER FACE纪录
作者:mileistone- 来自:媒智科技https://zhuanlan.zhihu.com/p/315511581这几年人脸检测的benchmark越刷越高,方法也越来越复杂,提出的模块或者方法大都专门为人脸检测设计,不易复现和使用,比如DSFD里的FEM、PAL、IAM,ASFD里的AutoFEM、PAL、IAM、DRMC loss,HAMBox里的PA、OAM、RAL等等。WIDER FACE验证集hard结果WIDER FACE测试集hard结果鉴于此,我们设计了一个简单而.转载 2020-11-28 00:01:20 · 1484 阅读 · 0 评论 -
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals作者单位:港大, 同济大学, 字节AI Lab, UC伯克利沿着目标检测领域中Dense和Dense-to-Sparse的框架,Sparse R-CNN建立了一种彻底的Sparse框架, 脱离anchor box,reference point,Region Proposal Network(RPN)等概念,无需Non-Maximum Suppression(NMS)后处原创 2020-11-25 11:40:15 · 1665 阅读 · 2 评论 -
目标检测新范式!港大同济伯克利提出Sparse R-CNN
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals作者单位:港大, 同济大学, 字节AI Lab, UC伯克利沿着目标检测领域中Dense和Dense-to-Sparse的框架,Sparse R-CNN建立了一种彻底的Sparse框架, 脱离anchor box,reference point,Region Proposal Network(RPN)等概念,无需Non-Maximum Suppression(NMS)后处转载 2020-11-25 11:36:22 · 1687 阅读 · 2 评论 -
NanoDet目标检测新网络!比YOLO跑的还快
项目链接:https://github.com/RangiLyu/nanodet作者:RangiLyuNanoDetSuper fast and lightweight anchor-free object detection model. Real-time on mobile devices.⚡Super lightweight: Model file is only 1.8 mb.⚡Super fast: 97fps(10.23ms) on mobile ARM CPU.????Tra转载 2020-11-24 14:24:30 · 6926 阅读 · 0 评论