卷积神经网络的代码

本文介绍了卷积神经网络中的关键组件——1x1卷积层的功能,它相当于全连接层用于调整通道数;以及MaxPool2d池化层的作用,降低对位置和空间分辨率的敏感性。同时,涵盖了多输入和多输出通道的处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cov1=nn.Conv2d(1,1,kernel_size=(5,3),padding=(2,1),stride=1)
cov2=nn.Conv2d(1,1,kernel=3,padding=1)

输出的张量形状为:

(n-kernel+padding+stride)/stride * (n-kernel+padding+stride)/stride

多输入通道时:对每个通道进行卷积再相加,假设函数为corr2d_multi_in(X,k)

多输出通道时:torch.stack([corr2d_multi_in(X,k)for k in K],0)

注意1*1卷积层的作用:相当于全连接层,用于调整通道数量与模型复杂度

池化层的作用:降低卷积层对位置的敏感,对空间降采样的敏感

pool2d=nn.MaxPool2d(3,padding=1,stride=2)

池化层不改变通道数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值