最新扣子(Coze)实战案例:手把手教你把扣子(Coze)接入到微信公众号(订阅号)

☺️ 大家好,我是 斜杠君手把手教你搭建扣子AI应用
☘️ 我的教程《AI应用开发系列教程之扣子(Coze)实战教程》上线了。
关注斜杠君,可获取完整版教程,完全免费学习。

最近,有同学在问,如何把扣子智能体对接到微信公众号?今天斜杠君就手把手教给大家,通过简单的几个步骤,让你的微信公众号实现智能化管理。

温馨提示:本文内容很多,涉及贯穿了搭建扣子应用的很多知识。 没看过的教程的同学,一定关注后再看,不然容易找不到。如果学懂本文,你可以完全掌握了扣子图像流的原理,话不多说,上干货。

本文重点

1、创建Bot

2、绑定知识库

3、配置公众号

4、测试公众号

接下来让我们详细一一讲解。

一、创建Bot

首先,我们要先来做一下准备工作,创建一个Bot。

二、人设与回复逻辑

编写「人设与回复逻辑」

具体内容可以按我以下的内容填写:

# 角色
你是专业的斜杆君公众号助手,能够以清晰、简洁、易懂且富有亲和力的语言,为用户全面且精准地解答各种与斜杆君公众号相关的疑问。
你可以充分调用扣子知识库的丰富资源来回答问题。

## 技能
### 技能 1: 回答常见问题
1. 当用户提出常见问题时,迅速从扣子知识库中提取准确信息进行回答。
2. 如果问题不够明确,先与用户进一步沟通,明确其需求后再作答。
3. 回答示例:
<清晰、准确且简洁的回答内容>


## 限制:
- 只专注于处理与斜杆君公众号直接相关的问题,坚决拒绝回答无关内容。
- 所输出的回答内容必须严格按照给定的格式进行组织,不得有任何偏离框架的情况。
- 务必保持回答的简洁明了,避免冗长、复杂和模糊不清的表述。

三、新建知识库

「扣子知识库」的作用主要是用来Bot从知识库中检索回答。

不会创建知识库的同学可以看我的《Coze扣子实战教程》知识库部分。

教程地址:https://www.bzfree.com/doc/coze

四、绑定知识库

把「扣子知识库」添加到Bot中。

五、调试Bot

接下来调试一下:

可以看到,Bot从知识库中进行了检索,回答完全没有问题。

接下来就到了重要的环节,把Bot发布到公众号。

六、配置微信公众号

点击「发布按钮」

找到「微信订阅号」,点击「配置按钮」

按下图所示,找到微信公众号中的「开发者ID信息」

进入到你的公众号管理后台,依次找到「设置与开发」->「基本配置」

点击「基本配置」就可以看到开发者ID了

复制开发者ID到刚才前面打开的配置弹窗中,点击「保存按钮」

这时候会出现一个二维码,用你的公众号主账号的微信扫一下二维码授权即可。

这时可以看到,微信订阅号这里显示「已授权」,证明配置成功了。

我们点击「发布按钮」,再点「完成」就可以了。

七、测试公众号

进入到公众号界面,输入几个问题测试一下:

可以看到,回答的效果不错,是我们的预期。整体测试下来,只是回复速度略慢一些,大家可以试试你们的速度怎么样。

好了,到这里,扣子对接微信公众号的方法就学习完了,希望大家可以使用这个功能提高自己公众号的问答专业性和及时性。愿大家在本文中能有所收获。

请关注我,我是斜杠君,持续和大家分享AI应用干货知识。本文是《AI应用开发系列教程之扣子(Coze)实战教程》中的内容,关注我获取完整版教程,完全免费学习。

精选推荐:

最新扣子(Coze)实战案例:扣子卡片的制作及使用,完全免费教程

最新扣子(Coze)实战案例:图像流工具节点示例详解

最新扣子(Coze)实战案例:图像流工具之人像风格化,完全免费教程

扣子工作流实战案例教程,手把手教你搭建一个图书管理工作流

最新扣子(Coze)实战教程:如何创建扣子插件,完全免费,快来学习吧~

### Coze 实战案例:课程答疑机器人实现方案与教程 Coze 平台为开发者提供了构建智能体(Agent)的完整工具链,特别是在育领域,课程答疑机器人是一个典型的实战案例。以下从基础概念、技术实现到具体教程进行详细说明。 #### 1. 基础概念 课程答疑机器人是一种基于自然语言处理(NLP)和检索增强生成(RAG)技术的智能应用。它通过分析学生提出的问题,结合课程内容的知识库,提供精准的答案。这种机器人可以显著提升学习效率,并减轻师的工作负担[^1]。 #### 2. 技术实现 - **工作流设计**:在 Coze 平台上,首先需要定义机器人的工作流。例如,当用户提问时,机器人会依次执行以下步骤: - 问题解析:将自然语言问题转化为结构化数据。 - 知识检索:从课程知识库中查找相关答案。 - 答案生成:利用 RAG 技术生成最终的回答。 - **插件集成**:为了增强功能,可以通过 Coze 的插件系统集成第三方服务,如语音识别、文本转语音等。这使得机器人能够支持多模态交互。 - **RAG 技术应用**:RAG 技术是实现高质量回答的关键。它结合了传统检索技术和大语言模型的优势,确保答案既准确又具有上下文关联性[^3]。 #### 3. 实现方案 以下是基于 Coze 平台构建课程答疑机器人的具体实现方案: ```python # 初始化 Coze 平台环境 from coze import Agent, Workflow, Plugin # 定义工作流 workflow = Workflow( steps=[ "parse_question", # 问题解析 "retrieve_knowledge", # 知识检索 "generate_answer" # 答案生成 ] ) # 创建智能体 agent = Agent( name="CourseQA", workflow=workflow, plugins=[ Plugin("knowledge_base"), # 集成知识库插件 Plugin("rag_generator") # 集成 RAG 插件 ] ) # 启动机器人 def start_robot(): while True: question = input("请输入您的问题:") answer = agent.process(question) print(f"机器人回答:{answer}") start_robot() ``` #### 4. 教程推荐 - **官方文档**:Coze 官方提供了详细的开发文档,涵盖从基础入门到高级应用的所有内容[^1]。 - **实战项目**:参考《Coze与智能体开发》课程中的“AI资讯机器人”案例,该案例详细讲解了如何结合实际场景设计智能体[^1]。 - **企业级案例**:《手把手你如何用扣子COZE)打造一个企业级的知识库机器人》一文中,展示了类似课程答疑机器人的构建流程[^2]。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值