最新扣子(Coze)案例教程:Coze智能出题,一键导出飞书文档!老师家长们练娃必备!告别手工出题

大家好,我是斜杠君。

暑假来了,孩子们的学习也进入了一个新的阶段。作为老师和家长,如果在假期陪伴孩子们学习,又不被出题这件事困扰呢?

手动出题总是费时又费力,得不断调整内容,还得确保每次题目都不重复,是个让人头疼的事。

今天斜杠君就带大家用扣子搭建一个智能体,它能帮你快速定制试卷,一键导出飞书文档,轻松生成题目,彻底解放老师和家长的出题困扰!

省时省力,告别手动出题,让你有更多时间陪伴孩子,专注其他教学内容。无论你是老师还是家长,都能快速上手,提升工作效率,轻松应对假期学习!

接下来,话不多说,斜杠君用最简单的方式教给大家。大家可以点个关注,领取为大家准备的【扣子视频教程和学习文档】,而且也不会错过我后面的教程了。

一、《智能化试卷出题》流程

1. 家长老师们输入年级、科目,题目难度等信息。

2. 智能体根据需求出题

3. 导出到飞书文档

二、业务逻辑搭建

1. 新建应用

首先访问扣子开发平台:

https://www.coze.cn/home

在【工作空间】中,点击【项目开发】,然后点击【创建按钮】,如图所示:

应用名称和描述:

2. 开始节点

【开始节点】有三个参数,智能体会结合这三个维度进行出题:

class: 表示【年级】参数。

subject: 表示【科目】参数。

difficulty: 表示【难度】参数。

3. 大模型节点

【开始节点】后面连接【大模型节点】,这个节点的作用是根据用户输出的三个维度的信息,生成一个试卷的提示词。

例如下面的形式:

这个大模型的提示词斜杠君已为大家准备好,请在文章结尾领取。

4. 大模型节点

这里再连接一个【大模型节点】,作用是根据前面生成的提示词来生成题目。

我们来看一下生成题目的形式:

这部分的提示词也为大家准备好了,请在文章结尾领取。

5. 飞书文档插件

【大模型节点】后面连接一个【飞书文档插件】中,把生成的题目写入到飞书文档。

6. 结束节点

最后连接到【结束节点】,把飞书文档的地址进行输出。

到这里【业务逻辑】的部分就搭建完成了,接下来我们来设计用户界面。

二、用户界面搭建

在用户界面这里,最主要的是设置三个选择下拉框,然后把三个选项的值作为参数传到工作流中。

当点击【开始出题】按钮时,就开始【调用工作流】,工作流执行完毕后,返回飞书文档的地址。

整体应用【业务逻辑】和【用户界面】就为大家讲解完了,接着我们来看一下生成后的文档效果。

只需要选几个选项,点一下按钮就生成完毕了,是不是很方便?如果你也在为试卷出题困扰,快试试这个智能体吧~

原文地址_提示词领取_免费交流群:最新扣子(Coze)案例教程:Coze智能出题,一键导出飞书文档!老师家长们练娃必备!告别手工出题

### Coze 实战案例:课程答疑机器人实现方案与教程 Coze 平台为开发者提供了构建智能体(Agent)的完整工具链,特别是在教育领域,课程答疑机器人是一个典型的实战案例。以下从基础概念、技术实现到具体教程进行详细说明。 #### 1. 基础概念 课程答疑机器人是一种基于自然语言处理(NLP)和检索增强生成(RAG)技术的智能应用。它通过分析学生提出的问题,结合课程内容的知识库,提供精准的答案。这种机器人可以显著提升学习效率,并减轻教师的工作负担[^1]。 #### 2. 技术实现 - **工作流设计**:在 Coze 平台上,首先需要定义机器人的工作流。例如,当用户提问时,机器人会依次执行以下步骤: - 问题解析:将自然语言问题转化为结构化数据。 - 知识检索:从课程知识库中查找相关答案。 - 答案生成:利用 RAG 技术生成最终的回答。 - **插件集成**:为了增强功能,可以通过 Coze 的插件系统集成第三方服务,如语音识别、文本转语音等。这使得机器人能够支持多模态交互。 - **RAG 技术应用**:RAG 技术是实现高质量回答的关键。它结合了传统检索技术和大语言模型的优势,确保答案既准确又具有上下文关联性[^3]。 #### 3. 实现方案 以下是基于 Coze 平台构建课程答疑机器人的具体实现方案: ```python # 初始化 Coze 平台环境 from coze import Agent, Workflow, Plugin # 定义工作流 workflow = Workflow( steps=[ "parse_question", # 问题解析 "retrieve_knowledge", # 知识检索 "generate_answer" # 答案生成 ] ) # 创建智能体 agent = Agent( name="CourseQA", workflow=workflow, plugins=[ Plugin("knowledge_base"), # 集成知识库插件 Plugin("rag_generator") # 集成 RAG 插件 ] ) # 启动机器人 def start_robot(): while True: question = input("请输入您的问题:") answer = agent.process(question) print(f"机器人回答:{answer}") start_robot() ``` #### 4. 教程推荐 - **官方文档**:Coze 官方提供了详细的开发文档,涵盖从基础入门到高级应用的所有内容[^1]。 - **实战项目**:参考《Coze智能体开发》课程中的“AI资讯机器人”案例,该案例详细讲解了如何结合实际场景设计智能体[^1]。 - **企业级案例**:《手把手教你如何用扣子COZE)打造一个企业级的知识库机器人》一文中,展示了类似课程答疑机器人的构建流程[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值