
深度学习-基于Python
文章平均质量分 95
具备一定Python知识(当然文内会回顾Python理论)和高数知识。
andyyah晓波
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习-基于Python:第 5 章 误差反向传播法
介绍链式法则时,我们需要先从复合函数说起。复合函数是由多个函数构成的函数。比如,z=(x+y)^2 是由式(5.1)所示的两个式子构成的。链式法则是关于复合函数的导数的性质,定义如下。如果某个函数由复合函数表示,则该复合函数的导数可以用构成复合函数的各个函数的导数的乘积表示。这就是链式法则的原理,乍一看可能比较难理解,但实际上它是一个非常简单的性质。原创 2024-07-09 20:39:01 · 1277 阅读 · 0 评论 -
深度学习-基于Python:第4 章 神经网络的学习
本章的主题是神经网络的学习。这里所说的“学习”是指从训练数据中自动获取最优权重参数的过程。本章中,为了使神经网络能进行学习,将导入损失函数这一指标。而学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。为了找出尽可能小的损失函数的值,本章我们将介绍利用了函数斜率的梯度法。原创 2024-07-08 18:36:47 · 965 阅读 · 0 评论 -
深度学习-基于Python:第3 章 神经网络
上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消息。具体地讲,神经网络的一个重要性质是它可以自动地从数据中学习到合适的权重参数。原创 2024-07-08 14:47:47 · 857 阅读 · 0 评论 -
深度学习-基于Python:第2 章 感知机
本章将介绍感知机A(perceptron)这一算法。感知机是由美国学者FrankRosenblatt 在1957 年提出来的。为何我们现在还要学习这一很久以前就有的算法呢?因为感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。本章我们将简单介绍一下感知机,并用感知机解决一些简单的问题。希望读者通过这个过程能熟悉感知机。原创 2024-07-08 11:40:55 · 885 阅读 · 0 评论 -
深度学习-基于Python:第1 章 Python 入门
Python这一编程语言已经问世20多年了,在这期间,Python不仅完成了自身的进化,还获得了大量的用户。现在,Python作为最具人气的编程语言,受到了许多人的喜爱。接下来我们将使用Python实现深度学习系统。不过在这之前,本章将简单地介绍一下Python,看一下它的使用方法。已经掌握了Python、NumPy、Matplotlib等知识的读者,可以跳过本章,直接阅读后面的章节。原创 2024-07-08 10:46:24 · 1309 阅读 · 0 评论 -
深度学习-基于Python:前言
科幻电影般的世界已经变成了现实—人工智能战胜过日本将棋、国际象棋的冠军,最近甚至又打败了围棋冠军;智能手机不仅可以理解人们说的话,还能在视频通话中进行实时的“机器翻译”;配备了摄像头的“自动防撞的车”保护着人们的生命安全,自动驾驶技术的实用化也为期不远。环顾我们的四周,原来被认为只有人类才能做到的事情,现在人工智能都能毫无差错地完成,甚至试图超越人类。因为人工智能的发展,我们所处的世界正在逐渐变成一个崭新的世界。在这个发展速度惊人的世界背后,深度学习技术在发挥着重要作用。原创 2024-07-08 09:20:12 · 766 阅读 · 0 评论