题目大意:给出一个F代表农场的个数,其实就是测试样例组数,给出个N代表每个农场包含N个厂区,M代表N个厂区之间之间的路径条数,W表示有W个虫洞
题目上说路径是双向的,虫洞是单向的,意味着是有向图,并且说虫洞从一个顶点到另一个顶点让时间倒流,意味着路的权值是负值,接下来的M行是路径的条数,并且题目已经说明是一个厂区到另一个厂区不一定只有一条路(Two fields might be connected by more than one path.),接下来的W行是虫洞的起始和结束位置,还有让时间倒退的值。
解决:首先是建图,我用邻接矩阵,建图的时候要注意两个厂区之间不一定只有一条路,要添加一条语句让最小的进图,M个是双向的,W个是单向的,单向的不用判断直接赋值肯定没有比
它的值还小的。然后是找负回路用的是 spfa
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
const int N=3000;
const int MAX=0x3f3f3f3f;
int cost[N][N];
int inq[N];
int dist[N];
int n,m,w;
int cnt[N];
bool spfa(int v)
{
int i;
memset(dist,0x3f3f,sizeof(dist));
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
int v0=v;
dist[v0]=0;
queue<int> q;
q.push(v0);
inq[v0]=1;
// 源点进队列与不进队列虽然关系不大,但是进队列可以缩短运行时间,每进一次可是不要小看,
//这个点面对的是所有的边,所以进队列要将cnt的值置为1
cnt[v0]=1;
while(!q.empty())
{
v0=q.front();
q.pop();
inq[v0]=0;
for(i=1;i<=n;i++)
{
if(cost[v0][i]<MAX && dist[v0]+cost[v0][i]<dist[i])
{
dist[i]=dist[v0]+cost[v0][i];
if(!inq[i])
{
inq[i]=1;
q.push(i);
//共有n条边,等于结点总数返回,大于当然可以,但是何必呢。费时不是
if(++cnt[i]==n)return true;
}
}
}
}
return false;
}
int main()
{
int icase,i,a,b,val;
scanf("%d",&icase);
while(icase--)
{
memset(cost,0x3f3f,sizeof(cost));
scanf("%d%d%d",&n,&m,&w);
for(i=0;i<m;i++)
{//输入时比较一下,由于邻接矩阵两个顶点只能放一条边,只好选最短边放了
scanf("%d%d%d",&a,&b,&val);
if(cost[a][b]>val){cost[a][b]=cost[b][a]=val;}
}
for(i=0;i<w;i++)
{//这个地方也是可以判断一下,选最短的边放,万一两个厂区之间有两个洞呢
scanf("%d%d%d",&a,&b,&val);
cost[a][b]=-val;
}//自己假设的1是源点,若是不连通,就惨了,
if(spfa(1)){puts("YES");}
else puts("NO");
}
system("pause");
return 0;
}
虽然ac了,但是感觉漏洞百出,只是数据通过了,不只是为了通过数据,就万事大吉了。
#include <queue>
#include <cstring>
const int MAX=0x3f3f3f3f;
using namespace std;
const int N=3000;
int cost[N][N];
int inq[N];
int dist[N];
int n,m,w;
int cnt[N];
bool spfa()
{
int i;
memset(dist,0,sizeof(dist));
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
int v0;
//为了防止图不连通。将所有顶点入队,并且初始化dist为0,意味着
//虚拟源点到各个顶点的距离为0
queue<int> q;
for(int i=1;i<=n;i++)q.push(i);//虽然进队,但是不能cnt[i]++,
while(!q.empty())
{
v0=q.front();
q.pop();
inq[v0]=0;
for(i=1;i<=n;i++)
{
if(cost[v0][i]<MAX && dist[v0]+cost[v0][i]<dist[i])
{
dist[i]=dist[v0]+cost[v0][i];
if(!inq[i])
{
inq[i]=1;
q.push(i);//判断的时候还要是n,虚拟的无视
if(++cnt[i]==n)return true;
}
}
}
}
return false;
}
int main()
{
int icase,i,a,b,val;
scanf("%d",&icase);
while(icase--)
{
memset(cost,0x3f3f,sizeof(cost));
scanf("%d%d%d",&n,&m,&w);
for(i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&val);
if(cost[a][b]>val){cost[a][b]=cost[b][a]=val;}
}
for(i=0;i<w;i++)
{
scanf("%d%d%d",&a,&b,&val);
cost[a][b]=-val;
}
if(spfa()){puts("YES");}
else puts("NO");
}
system("pause");
return 0;
}
以上的程序虽然都可以但是时间复杂度已经达到了1500ms,以下用spfa+邻接表实现。
#include <iostream>
#include <queue>
#include <cstdio>
using namespace std;
const int N=510;
struct node
{
int v,w,next;
};
node e[50000];
int n,m,w,ss,ee,t;
int pos;
int head[N];
int cnt[N];
int dist[N];
bool inq[N];
void init()
{
memset(head,-1,sizeof(head));
memset(dist,0,sizeof(dist));
memset(cnt,0,sizeof(cnt));
memset(inq,0,sizeof(inq));
}
void addedge(int u,int v,int w)
{
e[pos].v=v;
e[pos].w=w;
e[pos].next=head[u];
head[u]=pos++;
}
bool spfa()
{
int v0,v,w,i;
queue<int> q;//虚拟顶点各个顶点入队
for(i=1;i<=n;i++)q.push(i);
while(!q.empty())
{
v0=q.front();
q.pop();
inq[v0]=false;
for(i=head[v0];i!=-1;i=e[i].next)
{
v=e[i].v;
w=e[i].w;
if(dist[v0]+w<dist[v])
{
dist[v]=dist[v0]+w;
if(!inq[v])
{
inq[v]=1;
q.push(v);
if(++cnt[v]==n)return true;
}
}
}
}
return false;
}
int main()
{
int i,f;
scanf("%d",&f);
while(f--)
{
pos=0;
scanf("%d%d%d",&n,&m,&w);
init();//就因为init放在了scanf前面导致不断错误,并提出了可笑的问题
for(i=0;i<m;i++)
{
scanf("%d%d%d",&ss,&ee,&t);
addedge(ss,ee,t);
addedge(ee,ss,t);
}
for(i=0;i<w;i++)
{
scanf("%d%d%d",&ss,&ee,&t);
addedge(ss,ee,-t);
}
if( spfa() )puts("YES");
else puts("NO");
}
system("pause");
return 0;
}