自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 收藏
  • 关注

原创 智能抠图节点-练习人物与动物抠除背景保留前景

本文详细介绍了在扣子开发平台创建图像抠图工作流的完整步骤。从登录平台开始,依次演示了创建工作流、添加抠图节点、连接配置各节点(开始、抠图、结束)的具体操作,并通过测试运行展示了抠图效果(包括长颈鹿等示例)。整个过程配有清晰的界面截图,帮助用户直观理解每个操作环节,最终实现图片背景去除功能。

2025-09-04 08:34:42 58

原创 AI虚拟人物-卡通动漫二次元-商业空间装修设计-3D建模-LOGO设计

本文详细介绍了在扣子开发平台上使用图像生成功能的具体操作流程。通过创建工作流并添加图像生成节点,用户可配置不同风格(人像、动漫、油画、3D卡通、空间模型、LOGO设计)的图像生成参数,包括模型选择、提示词设置和参考图配置等。每个风格都提供了节点配置步骤和测试效果展示,帮助用户快速掌握多种图像风格的生成方法。操作过程图文并茂,便于理解执行。

2025-09-03 08:56:28 69

原创 AIGC章节导学与图像生成实战入门

本文介绍了在扣子开发平台使用AIGC图像生成节点的详细步骤:1)登录平台创建工作流;2)添加并连接图像生成节点;3)配置提示词优化节点提升输出质量;4)通过多次测试调整模型参数。教程包含16个图文步骤,涵盖从基础配置到提示词优化的完整流程,帮助用户快速掌握AI图像生成技术应用。

2025-09-02 08:48:27 140

原创 实战练习:通过HTTP请求节点的POST方法用API创建智能体 & JSON序列化节点

本文详细介绍了在扣子开发平台创建智能体工作流的完整步骤。首先通过资源库创建工作流,然后参考文档配置HTTP请求节点,包括设置请求头、参数和JSON序列化节点。接着演示了如何测试运行工作流,创建笑话生成智能体,并添加JSON反序列化节点处理响应。最后总结了通过工作流创建、测试和删除智能体的完整流程,以及如何利用平台API实现智能体管理。整个过程包含20个具体操作步骤,配有详细截图说明。

2025-09-01 10:08:53 233

原创 实战练习:HTTP请求发送节点GET方法与JSON反序列化节点

本文详细介绍了在扣子开发平台创建智能体列表API的完整步骤。从基础概念开始,通过26个步骤指导用户完成创建工作流、配置HTTP请求、设置请求头和参数、添加JSON反序列化节点等操作。关键环节包括获取工作空间ID、创建个人访问令牌、对接官方API文档等。最终实现的API接口可返回已发布的智能体列表,并提供了完整的测试运行方法。

2025-08-29 08:47:59 306

原创 实战练习:单数据表CURD节点综合案例

本文详细介绍了在扣子开发平台(coze.cn)上进行数据增删改查的完整操作步骤。通过图文结合的方式,逐步演示了如何创建工作流、配置数据表、设置各功能节点(新增/删除/更新/查询数据)以及试运行流程。重点说明了每个节点的参数配置方法,包括字段选择、条件设置、排序规则和查询限制等。最后还展示了如何手动添加测试数据并验证查询结果,为开发者提供了清晰的操作指引。

2025-08-28 11:12:00 154

原创 实战练习:SQL自定义节点对数据库的增删改查

本文详细介绍了在扣子开发平台使用SQL自定义节点进行数据库操作的全流程。通过12个实操步骤,演示了如何创建工作流、添加SQL节点、配置数据表,并实现增删改查功能。关键操作包括:1)创建工作流和SQL节点;2)配置数据表结构;3)通过自然语言编写SQL语句;4)测试增删改查功能;5)实时查看数据变化。该教程特别展示了如何用自然语言简化SQL编写,并验证了每条SQL语句的执行效果,为开发者提供了清晰的操作指南。

2025-08-27 09:31:41 272

原创 输入&输出与无限循环节点的组合案例

本文详细介绍了在扣子开发平台创建工作流的具体步骤。首先登录平台创建工作流,然后添加并配置循环节点,包括设置输入、IF选择器和输出节点。文章重点说明了如何通过条件判断实现循环控制:当输入为2时继续循环,输入为1时终止循环。最后通过测试运行验证了工作流的正确性,展示了完整的循环控制流程。该教程共包含18个步骤,配有详细的界面截图说明。

2025-08-26 09:20:27 220

原创 实战练习:变量聚合节点的应用案例

本文介绍了在扣子开发平台使用变量聚合节点的完整操作流程。从创建资源到构建工作流,详细说明了意图识别、大模型节点(数学/语文老师)的配置方法,重点演示了变量聚合节点的设置与连接方式,最后通过测试运行验证了多分支工作流的正确性。该教程适合初学者快速掌握变量聚合功能在对话系统中的应用。

2025-08-25 09:12:23 196

原创 实战练习:批处理节点

本文介绍了在扣子开发平台使用批处理节点的完整操作流程。主要包括12个步骤:从创建工作流、添加批处理节点,到配置开始节点变量和大模型参数,最后完成测试运行。教程配有详细截图说明每个配置环节,重点演示了如何设置默认值、连接处理节点,以及调用大模型进行批量分析。通过这个流程,用户可以掌握批处理功能的基本使用方法,实现自动化任务处理。

2025-08-22 09:25:05 200

原创 实战练习:循环节点与循环体的使用技巧

本文详细介绍了在扣子开发平台创建工作流的完整步骤。通过16个图文步骤,从创建资源库、添加循环节点、设置变量、配置代码节点,到最终测试运行,完整演示了如何构建一个包含循环逻辑的工作流。重点展示了循环节点的两种使用方式:条件循环和指定次数循环,并提供了每个操作节点的具体配置方法和运行效果截图。整个流程直观易懂,适合开发者快速掌握平台工作流的创建方法。

2025-08-21 09:26:51 361

原创 实战练习:意图识别顾客问题

本文介绍了意图识别节点的创建与配置流程。通过扣子开发平台,用户可以创建工作流并添加意图识别节点,通过设置关键词匹配不同业务场景(如售前/售后问题)。文章详细展示了从节点创建、关键词配置到测试运行的完整步骤,包括输出节点的连接与命名,以及如何通过参数调整识别准确度。最终实现根据用户输入自动分类并输出对应结果的功能,为智能客服等应用场景提供了基础解决方案。

2025-08-20 09:08:56 309

原创 实战任务二:用选择器+代码节点处理考试成绩

本教程详细介绍了如何在扣子开发平台使用选择器节点处理考试成绩。通过创建工作流、添加代码节点生成随机成绩、配置选择器节点设置成绩等级判断条件(优、良、中等、差),并连接输出节点展示结果。关键步骤包括:测试代码节点、调整选择器分支优先级、运行验证工作流等。教程配有详细的操作截图,帮助用户快速掌握使用选择器进行条件分支处理的方法。最终实现根据输入成绩自动输出对应评价等级的功能。

2025-08-19 09:17:38 266

原创 实战练习:选择器节点-设计工作流内的分支流程

本文详细介绍了在扣子开发平台创建工作流时使用选择器节点的完整流程。教程从创建基础工作流开始,逐步演示了如何添加选择器节点、配置输出分支并连接结束节点,重点讲解了不同输入变量类型(Integer、Number、Boolean、Time、Object、Array、File)的选择器配置方法。通过图文并茂的12个操作步骤,展示了包括节点命名、条件设置和试运行等关键环节,帮助开发者掌握工作流分支设计技巧,实现不同数据类型的条件判断和流程控制。

2025-08-18 09:25:06 346

原创 实战任务一:用代码节点处理数据的格式

本文详细介绍了在扣子开发平台创建工作流的完整步骤。从登录平台、创建工作流、连接节点,到添加插件和大模型节点,再到编写代码实现功能,共包含24个具体操作步骤。重点展示了如何通过自动优化提示词解决大模型节点的报错问题,并对比了大模型处理(耗时7秒且消耗token)与代码节点处理(快速且免费)两种方式的优劣。最后还介绍了如何利用AI辅助生成代码,并通过测试验证代码有效性。整体流程清晰,适合开发者参考学习。

2025-08-15 09:30:42 301

原创 本章导学:工作流规划与落地场景案例-解析10大类节点的用法

本文探讨了大模型需要工作流的原因,并展示了工具节点的概览。工作流能有效组织大模型的复杂任务处理流程,提升执行效率。通过可视化工具节点,可以清晰了解大模型各功能模块的组成与关系。文章配图直观呈现了工作流的结构设计和节点分布,为理解大模型的运行机制提供了基础认知。

2025-08-14 08:12:05 106

原创 文件盒子的使用实战-多模态文件存储与管理

本文详细介绍了扣子Coze平台中文件盒子的使用教程。文件盒子主要用于存储和管理用户上传的各类文件(如PDF、Word等),支持文件重命名、删除、批量上传和分类管理(可创建文件夹和相册)。与知识库文件不同,文件盒子更侧重临时文件存储和即时处理。教程包含20个具体操作步骤,从基本文件操作到快捷指令创建,指导用户如何上传文件后通过智能体进行内容总结,并演示了相册管理、文件移动等高级功能,最后还介绍了如何通过快捷指令快速访问文件盒子功能。

2025-08-13 09:24:49 282

原创 智能体的长期记忆能力实战-仿人脑对话总结成记忆后召回

本文介绍了扣子Coze平台的长期记忆功能及其应用场景。通过月老相亲案例演示了如何开启长期记忆功能,在Prompt中调用记忆数据,并进行预览调试。测试显示系统会优先从长期记忆搜索信息,并能查看保存的具体记忆内容。与变量和知识库相比,长期记忆更适合存储用户个性化信息。该功能可用于保存用户偏好、历史对话等场景,实现更个性化的交互体验。

2025-08-12 09:28:04 411

原创 智能体的记忆能力-内置数据库的使用-练习月老帮找对象解决单身问题

本文详细介绍了在扣子(Coze)平台上使用数据库功能的完整操作流程。从创建数据库、设计表结构、添加测试数据,到创建智能体、编写提示词、设置变量,再到数据的增删改查和调试测试,共包含30个具体步骤。通过图文并茂的方式,展示了如何利用扣子平台的数据库功能实现数据的持久化存储和智能交互,重点说明了上下文变量的使用方法和注意事项,包括如何清空对话记录以确保变量更新生效。该教程适用于需要利用扣子平台开发智能应用的初学者。

2025-08-11 09:24:16 218

原创 RAG图片知识库+DeepSeek识别汉服摄影馆样片风格

本文介绍了如何利用DeepSeek底模构建RAG图片知识库的完整流程。主要包括基础知识讲解(应用场景、DeepSeek优势、学习价值)和12步实操指南:从创建知识库、导入图片、人工标注,到建立智能体、选择大模型并进行语音测试。通过图文结合的方式,详细展示了每个操作步骤的界面截图和关键操作要点,最后以"推荐情侣照片"的语音交互测试作为案例演示。该教程为需要构建图片知识库的用户提供了清晰的实践路径。

2025-08-08 10:07:32 296

原创 RAG技术的底层原理-表格Excel变为知识库-练习-门店经营智能体

本文介绍了RAG(检索增强生成)技术的基本原理及在扣子开发平台上的实操流程。通过图文展示了RAG的底层工作机制,包括知识检索与生成模型的结合。详细提供了11个操作步骤,从创建知识库、上传文件、设置表结构到创建智能体并进行调试的全过程,重点演示了如何通过平台功能实现知识管理、数据预处理和智能体配置。最后通过测试验证了系统功能,为开发者提供了完整的RAG技术实现指南。

2025-08-07 09:28:59 313

原创 RAG技术入门-如何训练智能体的知识库

本文介绍了如何在扣子开发平台上创建和使用知识库的完整步骤。首先说明了知识库的作用和扣子平台的知识库功能特点,然后详细演示了从登录工作空间、创建知识库、上传文件到分段预览的15个操作步骤。其中重点包括知识库的创建与导入、智能体设置、插件添加、提示语编写以及最终的预览调试过程。通过图文结合的方式,完整呈现了知识库的搭建流程,帮助用户快速掌握这一工具的使用方法。

2025-08-06 09:17:37 417

原创 扣子Coze中的触发器实现流程自动化-实现每日新闻卡片式推送

摘要:本文介绍了智能体触发器的基本概念和操作步骤。触发器允许智能体在特定时间或事件发生时自动执行任务。操作流程包括:1)进入智能体编辑页;2)添加触发器;3)选择工作流并设置参数;4)允许用户创建定时任务;5)预览调试触发器;6)查看测试结果。还展示了如何将触发器改为事件触发模式,并提到后期可通过Python代码向指定URL推送数据来触发任务。整个过程包含10个详细步骤,配有操作界面截图说明。

2025-08-05 09:26:23 306

原创 工作流绑定卡片优化用户体验-练习我要找工作智能体

本文详细介绍了在智能体系统中创建工作流并绑定卡片数据的完整流程。首先通过创建智能体、生成图标、配置工作流节点(包括开始、插件和结束节点)等步骤构建基础工作流。随后重点阐述了卡片设计与数据绑定的关键操作:使用单列布局构建卡片框架,添加文本、标签和按钮等组件,通过变量绑定将工作流输出数据映射到卡片元素,最后进行预览调试并发布。整个过程涵盖了从工作流创建、卡片设计到数据对接的全链路操作,实现了工作流结果的可视化展示。

2025-08-04 10:07:45 435

原创 提示词调用工作流-练习DeepSeek打造小红书爆款文案

本文详细介绍了构建AI工作流的完整操作流程。首先说明仅依赖提示词的局限性,强调工作流的重要性。随后通过28个步骤,从创建工作空间、添加工作流节点(包括开始节点、搜索插件、大模型等),到配置参数、测试运行和发布流程。重点演示了如何连接不同节点、配置插件功能、重命名节点以及调试工作流。最后指导如何将工作流集成到智能体项目中,包括添加提示词、关闭用户建议功能以及预览调试。整个过程配有详细截图说明,为构建复杂AI应用提供了实用指南。

2025-08-01 09:33:53 151

原创 提示词调用插件工具扩展大模型功能边界

本文介绍了智能体开发的两个实操案例:小红书爆款笔记生成器和新闻助手。通过扣子开发平台,详细展示了从插件选择、智能体创建到提示词优化的完整流程。小红书案例重点演示了如何通过官方插件自动生成笔记内容,新闻助手案例则说明了如何利用新闻阅读插件获取并整理头条新闻。两个案例都强调了提示词调整和插件配置的关键作用,为开发者提供了智能体开发的实用指导。

2025-07-31 09:54:51 157

原创 提示词工程入门与实战 & 变量的使用

摘要:本文介绍了提示词工程的基本概念及其重要性,并提供了在Coze平台上创建智能体的15步详细教程。从注册登录到编写提示词、测试调试,再到添加限制条件和变量,完整演示了如何构建一个能准确回答水果相关问题的AI助手。教程包含大量截图指引,特别强调了提示词优化和边界设定的关键作用,帮助读者掌握与大模型有效交互的核心技巧。

2025-07-30 09:49:48 160

原创 扣子Coze平台的基础操作实战

本文详细介绍了在Coze平台上创建和发布智能体机器人的完整流程。从登录平台、创建工作空间开始,逐步演示了创建智能体、设置提示词(包括上海话翻译功能)、调试模型参数等关键步骤。重点展示了如何通过预览调试功能测试智能体响应,并详细说明了发布流程,包括设置开场白、选择发布平台等操作。

2025-07-29 09:43:08 115

原创 如何选择合适的大模型和合适的参数?火山豆包DeepSeek智谱4通义千问

选择大模型需考虑模型参数和应用场景。DeepSeek模型擅长数学计算和编程,在chatbootAreana测试中表现优异;智谱4支持128K上下文窗口,中文处理能力突出;abab适合长文本交互场景。不同模型各具特色,应根据任务需求选择合适的大模型配置。

2025-07-28 09:26:03 216

原创 使用扣子Coze开发Agent应用的流程与步骤

本文介绍了构建智能系统的7个关键步骤:1)规划准备;2)创建配置;3)知识构建;4)功能扩展;5)测试优化;6)发布部署;7)运营维护

2025-07-25 09:50:12 203

原创 什么是MCP?作用是什么?与Function Call区别?扣子空间

MCP(模型上下文协议)是由Anthropic公司推出的开放协议标准,旨在统一大模型调用第三方数据和工具的方式。该协议解决了不同厂商API标准不统一的问题,可显著提升AI生产力。MCP通过扩展AIAgent能力边界,支持更复杂场景应用,如用户研究和股票分析专家系统。典型应用案例是扣子空间(CozeSpace)平台,其采用探索/规划双模式,突破了传统插件对Agent能力的限制。该技术入选福布斯2023年AI50榜单,展现了在自动化工作流领域的创新价值。

2025-07-24 09:38:03 159

原创 Agent的基本工作原理与底层逻辑

PPA(感知-决策-行动)模型构建了智能体的闭环决策流程。感知环节通过数据清洗、标注、提取和整合处理信息;决策环节基于处理后的信息进行目标规划和约束分析;行动环节则负责执行选定的方案。该模型通过信息处理、策略制定和方案执行的闭环循环,实现了智能体的自主决策能力,其中核心在于各环节的协同运作与反馈机制。

2025-07-23 10:19:57 150

原创 如何理解与自然语言大模型对话中的 Token?

token是NLP中文本处理的最小单元,可以是单词、标点或字符。在AI对话系统中,token作为基本处理单位,中文称为“词元”。

2025-07-22 09:39:03 118

原创 LLM大模型与多模态

传统模型结构简单、参数量少,针对特定任务设计,依赖人工编程处理数据。大模型(如GPT)则具备海量参数,通过自然语言等多模态方式处理信息,泛化能力强。两者的区别在于算法、算力和数据。模态分为单模态(单一数据类型)和多模态(融合多种数据形式),后者能更全面地感知环境。多模态应用广泛,如智能驾驶等。

2025-07-21 10:30:18 271

原创 DeepSeek+Agent的能力边界

DeepSeek是杭州深度求索公司开发的AI工具,包含通用模型DeepSeek V3(擅长文本生成和快速响应)和推理模型DeepSeek-R1(专注复杂逻辑推理但速度较慢)。R1具备深度思考能力但存在幻觉问题,需搭配知识库约束。DeepSeek目前无法执行绘画、视频生成等创作任务,也不能本地部署。它可通过"扣子平台"与智能体结合扩展能力边界,适用于代码生成、数学推理等需要链式思维的场景,但仍受限于无法直接执行物理操作。

2025-07-18 09:25:53 279

原创 什么是AI-AIGC-AGI-Agent?基本概念与区别的详细解析

AI(人工智能)指机器模仿人类思考与学习的能力;Agent是基于大模型的智能代理,能规划工作流并执行任务;AIGC是AI生成内容的新型创作方式;AGI(通用人工智能)追求类人的全面智能,区别于特定领域的AI。四者共同推动智能化发展,AGI代表未来方向。

2025-07-17 09:53:16 194

原创 什么是扣子?扣子和豆包有什么区别?学会有什么用?

扣子是新一代无代码AI应用开发平台,支持快速构建基于大模型的各类AI应用,并支持多平台发布。相比豆包等竞品,扣子的优势在于零代码开发、多平台发布能力以及API/SDK集成支持,降低了AI应用开发门槛,适合无编程基础的用户快速实现AI业务落地。

2025-07-17 09:51:31 296

原创 Coze智能体开发实战-旅游助手

摘要:本文介绍了广州长隆野生动物园智能旅游助手的开发流程。系统通过四个主要功能模块(景点讲解、行程规划、天气查询、酒店查询)实现智能服务。开发过程包括意图识别、大模型处理、知识库构建等关键步骤,其中特别创建了景点知识库以支持景点讲解功能。各功能模块通过问答交互、变量聚合等技术实现,最后通过测试集验证了系统的运行效果。该智能助手为游客提供了一站式的旅游信息服务解决方案。

2025-07-16 09:30:45 484

原创 Coze智能体开发实战-多Agent综合实战

文章摘要:本文介绍了单Agent和多Agent两种代码审查系统的创建流程。单Agent系统通过3个步骤创建,配置角色、技能和规范要求,适用于单一编程语言的代码审查。多Agent系统则通过11个步骤构建,支持模块化开发,可以同时处理JavaScript、Python和PHP等多种语言的代码审查。相比单Agent系统,多Agent模式具有更好的扩展性和灵活性,能够适应不同编程语言的审查需求。两种系统都遵循各自语言的规范标准,如Python的PEP8、JavaScript的ES6和PHP的PSR规范。

2025-07-15 09:35:37 222

原创 Coze智能体开发实战-单Agent综合实战

本文介绍了如何通过Gitee Webhooks实现代码审查自动化工作流。主要步骤包括:1)在Gitee仓库中添加Webhook,配置可外网访问的URL;2)编写PHP脚本处理Webhook请求,实现仓库克隆、代码拉取、增量代码获取等功能;3)将增量代码通过API发送至Coze平台的工作流进行代码规范检查;4)配置Coze工作流,连接大模型节点进行代码测试。最后获取工作流ID和API令牌替换PHP脚本中的对应值,完成自动化代码审查流程。该系统能在代码提交后自动检查规范,并通过企业微信机器人推送检查结果。

2025-07-14 09:24:33 311

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除