脉象

//20190303
源自百度百科
【附】阅读参考文献
因年代久远,本文言语文词深奥难懂。为了帮助读者提高理解,特提供参考资料《把脉断生死》一文如下:
中医古籍总结七种危险的脉象,即釜沸、虾游、屋漏、雀啄、解索、弹石脉等,称为真脏脉,又叫七绝脉,凡见七绝脉,必死无疑。
雀啄脉,是一种脉来急速,节律不齐,止而复发,犹如雀喙啄食的脉象,表现为脉搏在连续快速跳动3―6次之后,出现一次较长时限的歇止,并反复发作,短促而不规则。是脾气已绝的表现。多见于风湿性心脏病、冠心病、心肌梗塞等。
屋漏脉,是一种脉来迟缓,许久方来,如屋漏滴水的脉象,这种脉搏约为每分钟20―――40次。可见于冠心病、风湿热、白喉、室间隔缺损等病症,反映了体内营养胃气的绝乏。
弹石脉,是一种来势沉实,指下如以指弹石的脉象,由于血管高度硬化,弹性极差而伴有外周血管阻力增加所致。常见于各种心血管病症,如桡动脉粥样硬化合并冠状动脉粥样硬化及心肌梗塞病症等。
解索脉,是一种脉来如绳索之解散,节律紊乱,忽疏忽密的脉象,其脉率多在每分钟80―150次。常见于冠心病、高血压性心脏病、风湿性心脏病人。
鱼翔脉,是一种脉来时起时伏,似有似无,如鱼之翔在河水的脉象,表现为严重的心律紊乱,脉率为每分钟
160次以上,发作初期脉体尚清楚,持续时间长时脉搏即突然减弱,似有似无。可见于心脏实质严重损害的疾病,如心肌梗塞、心肌炎、克山病等。
虾游脉,是一种来隐隐约约,去时一跃即逝,如虾游之状的脉象。其表现为严重心律紊乱,脉率快至每分钟
160次以上,脉位表浅而脉搏无力,并反复隐没,血压甚至降为零。持续隐没时间为数秒至数分钟不等。常见于低血钾症、冠心病、房室传导阻滞、甲状腺功能亢进性心脏病、心肌炎等病症。
釜沸脉,是一种脉来极快,有出无入,如锅中水沸,绝而无根,时出时灭的脉象。其表现为心率超过每分钟
180次以上,脉律突发突止,常见于阳热疾病,如甲状腺功能亢进性心脏病,风湿性心脏病,电解质紊乱的低血钾等。
偃刀脉,是一种来势弦细而紧急,如同以手摸刀刃之口的脉象。原因是由于诸多因素导致中小动脉血管紧张度增高。常可见于肾性高血压等动脉硬化症病人脉中。
转豆脉,是一种脉来去捉摸不定如豆之旋转的脉象。具体原因是由于心脏节律过速,血液流动过快导致脉管圆滑、流利不可捉摸。常见于再生障碍性贫血,病毒性心肌炎,急性白血病,恶性淋巴肉瘤,红斑狼疮性心肌病导致的重病垂危病人。
麻促脉,是一种急促而零乱的脉象,其脉率可达每分钟160次以上。常见于频死病人,严重低血钾,洋地黄中毒等心律严重失常病人。
正常脉古称平脉,是健康无病之人的脉象。正常脉象的形态是三部有脉,一息四至(闰以太息五至,相当72
-80次/分),不浮不沉,不大不小,从容和缓,柔和有力,节律一致,尺脉沉取有一定力量,并随主理活动和气候环境的不同而有相应的正常变化。正常脉象有胃、神、根三个特点。有胃:有胃气的脉象,从容、和缓、流利。古人说法很多,总的来说,正常脉象不浮不沉,不快不慢,从容和缓,节律一致便是有胃气。即使是病脉,无论浮沉迟数,但有徐和之象者,便是有胃气。脉有胃气,则为平脉,脉少胃气,则为病变,脉无胃气,则属真脏脉,或为难治或不治之征象,故脉有无胃气对判断疾病凶吉预后有重要的意义。
有神:有神的脉象形态,即有力柔和,节律整齐。如见弦实之脉,弦实之中仍带有柔和之象;微弱之脉,微弱之中不至于完全无力者都叫有脉神。神之盛衰,对判断疾病的预后有一定的意义。但必须结合声、色、形三者,才能作出正确的结论。脉之有胃、有神,都是具有冲和之象,有胃即有神,所以在临床上胃与神的诊法一样。
有根:三部脉沉取有力,或尺脉有力沉取不绝,就是有根的脉象形态。或病中肾气犹存,先天之本未绝,尺脉沉取尚可见,便是有生机。若脉浮大散乱,按之则无,则为无根之脉,为元气离散,标志病情危笃。
绝脉即真脏脉是在疾病危重期出现的脉象,真脏脉的特点是无胃、无神、无根。为病邪深重,元气衰竭,胃气已败的征象,又称“败脉”、“绝脉”、“死脉”、“怪脉”。
《素问·玉机真藏论》说:“邪气胜者,精气衰也。故病甚者,胃气不能与之俱至于手太阳,故真脏之气独见,独见者,病胜脏也,故曰死。
”真脏脉的形态在该文中亦有具体描述:“真肝脉至中外急,如循刀刃责责然,如按琴瑟弦„„,真心脉至坚而搏,如循薏苡子累累然„„;真肺脉至大而虚,如以毛羽中人肤„„;真肾脉至搏而绝,如指弹石辟辟然„„;真脾脉至弱而乍数乍疏„„。诸真脏脉见者,皆死不治也。
”《医学入门·死脉总诀》说:“雀啄连来三五啄,屋漏半日一滴落,弹石硬来寻即散,搭指散乱真解索,鱼翔似有又似无,虾�静中跳一跃,更有釜沸涌如羹,旦占夕死不须药。”可供参考。
根据真脏脉的主要形态特征,大致可以分成三类:
1.无胃之脉,无胃的脉象以无冲和之意,应指坚搏为主要特征。如脉来弦急,如循刀
刃称偃刀脉;脉动短小而坚搏,如循薏苡子为转豆脉;或急促而坚硬如弹石称弹石脉等。临
床提示邪盛正衰,胃气不能相从,心、肝、肾等脏气独现,是病情重危的征兆之一。
2.无根之脉,无根脉以虚大无根或微弱不应指为主要特征。如浮数之极,至数不清;
如釜中沸水,浮泛无根,称釜沸脉,为三阳热极,阴液枯渴之候;脉在皮肤,头定而尾摇,
似有似无,如鱼在水中游动,称鱼翔脉。脉在皮肤,如虾游水,时而跃然而去,须臾又来,
伴有急促躁动之象称虾游脉,均为三阴寒极,亡阳于外,虚阳浮越的征象。
3.无神之脉,无神之脉以脉率无序,脉形散乱为主要特征。如脉在筋肉间连连数急,
三五不调,止而复作,如雀啄食之状称雀啄脉;如屋漏残滴,良久一滴者称屋漏脉;脉来乍
疏乍密,如解乱绳状称解索脉。以上脉象主要由脾(胃)、肾阳气衰败所致,提示神气涣散,
生命即将告终

转载于:https://www.cnblogs.com/lavender-pansy/p/10464046.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值