ARIMA

ARIMA

具体案例可参见

[1] ARIMA建模实例

[2] Python时间序列数据分析–以示例说明

[3] 时间序列模式(ARIMA)—Python实现

[4] BOX-JENKINS预测法

1. AR/MA/ARMA/ARIMA

1.1 AR-自回归模型(Auto regression Model)

p p p阶自回归模型 A R ( P ) AR(P) AR(P) y t = c + ∅ 1 y t − 1 + ∅ 2 y t − 2 + ⋯ + ∅ p y t − p + e t y_{t}=c+\emptyset_{1} y_{t-1}+\emptyset_{2} y_{t-2}+\cdots+\emptyset_{p} y_{t-p}+e_{t} yt=c+1yt1+2yt2++pytp+et

其中, y t y_t yt为时间序列第 t t t时刻的观察值,即为因变量; y t − 1 , y t − 2 , ⋯   , y t − p y_{t-1},y_{t-2},\cdots,y_{t-p} yt1,yt2,,ytp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值