NVIDIA 5090 FP8 CUDA 手搓性能测试脚本详解

引言

在深度学习和高性能计算领域,NVIDIA GPU 凭借其强大的并行计算能力占据着重要地位。而 FP8(8 位浮点格式)作为一种新兴的数据格式,在提供较低精度的同时,能显著减少内存占用和提高计算速度。本文将详细解读一个基于 NVIDIA GPU(假设为 NVIDIA 5090)的 FP8 CUDA 程序,该程序主要实现了矩阵乘法(GEMM)并进行性能测试。

代码整体概述

此 CUDA 程序借助 FP8 数据格式开展矩阵乘法运算,并且对其性能进行测试。代码主要包含以下几个关键部分:

  1. 核函数:实现矩阵乘法。
  1. 矩阵初始化函数:对矩阵进行随机初始化。
  1. 性能测试函数:测量矩阵乘法的执行时间。
  1. 命令行参数解析函数:解析命令行输入的矩阵维度和测试轮数。
  1. 主函数:调用上述函数,输出性能测试结果。

代码详细解析

1. 头文件包含

#include <cuda_runtime.h>

#include <cuda_fp8.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h> // 用于参数解析

这里引入了 CUDA 运行时库、FP8 相关库以及标准 C 库,为后续代码的运行提供必要的支持。

2. 数据类型定义

typedef __nv_fp8_e4m3 fp8_t;

将 __nv_fp8_e4m3 定义为 fp8_t,方便后续代码使用。__nv_fp8_e4m3 是 NVIDIA 定义的一种 FP8 数据格式,采用 4 位指数和 3 位尾数。具体数据格式可以参考如下文档

15.18. __nv_fp8_e4m3 — CUDA Math API Reference Manual 12.8 documentation

3. 核函数 fp8_gemm

__global__ void fp8_gemm(

const fp8_t* A,

const fp8_t* B,

fp8_t* C,

int M, // 矩阵A的行数 (M x K)

int N, // 矩阵B的列数 (K x N)

int K // 公共维度

) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if (row < M && col < N) {

float sum = 0.0f;

for (int i = 0; i < K; i++) {

float a = (float)A[row * K + i];

float b = (float)B[i * N + col];

sum += a * b;

}

C[row * N + col] = fp8_t(sum);

}

}
  • 功能:实现矩阵乘法 C=A*B,其中 A 是 M *K的矩阵,B K *N 的矩阵,C 是 M*N 的矩阵。
  • 线程索引计算:借助线程块索引(blockIdx)和线程索引(threadIdx)算出当前线程要处理的矩阵元素的行和列。
  • 矩阵乘法计算:对于每个线程,计算 C 矩阵中对应元素的值,通过将A矩阵的对应行与 \(B\) 矩阵的对应列元素相乘并累加得到。
  • 数据类型转换:在计算过程中,把 FP8 类型的数据转换为 float 类型进行计算,最后再将结果转换回 FP8 类型。

4. 矩阵初始化函数 init_matrix

void init_matrix(fp8_t* mat, int rows, int cols) {

srand(time(NULL));

for (int i = 0; i < rows * cols; i++) {

float val = ((float)rand() / RAND_MAX) * 10.0f; // 生成0-10的随机数(符合FP8范围)

mat[i] = fp8_t(val);

}

}
  • 功能:对矩阵进行随机初始化,生成 0 到 10 之间的随机数,并将其转换为 FP8 类型。
  • 随机数生成:使用 rand() 函数生成随机数,再通过 srand(time(NULL)) 保证每次运行程序时生成的随机数不同。

5. 性能测试函数 test_performance

float test_performance(int M, int N, int K, int num_runs) {

// 主机内存分配

fp8_t* h_A = (fp8_t*)malloc(M * K * sizeof(fp8_t));

fp8_t* h_B = (fp8_t*)malloc(K * N * sizeof(fp8_t));

fp8_t* h_C = (fp8_t*)malloc(M * N * sizeof(fp8_t));

init_matrix(h_A, M, K);

init_matrix(h_B, K, N);

// 设备内存分配

fp8_t* d_A, *d_B, *d_C;

cudaMalloc((void**)&d_A, M * K * sizeof(fp8_t));

cudaMalloc((void**)&d_B, K * N * sizeof(fp8_t));

cudaMalloc((void**)&d_C, M * N * sizeof(fp8_t));

// 数据传输到设备(仅第一次传输,后续复用数据)

cudaMemcpy(d_A, h_A, M * K * sizeof(fp8_t), cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, K * N * sizeof(fp8_t), cudaMemcpyHostToDevice);

// 配置核函数参数

dim3 block_size(16, 16); // 固定线程块大小(可优化为动态)

dim3 grid_size(

(N + block_size.x - 1) / block_size.x,

(M + block_size.y - 1) / block_size.y

);

// 性能测量事件

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

float total_time = 0.0f;

for (int run = 0; run < num_runs; run++) {

cudaEventRecord(start, 0);

fp8_gemm<<<grid_size, block_size>>>(d_A, d_B, d_C, M, N, K);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float ms;

cudaEventElapsedTime(&ms, start, stop);

total_time += ms;

}

// 释放资源

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

free(h_A);

free(h_B);

free(h_C);

return total_time / num_runs; // 返回平均时间

}
  • 功能:对矩阵乘法的性能进行测试,返回多次运行的平均执行时间。
  • 内存分配:在主机和设备上分别分配矩阵所需的内存。
  • 数据传输:把主机上的矩阵数据传输到设备上。
  • 核函数配置:设定线程块大小和网格大小,调用核函数进行矩阵乘法运算。
  • 性能测量:利用 CUDA 事件记录核函数的执行时间,多次运行取平均值。
  • 资源释放:释放主机和设备上分配的内存。

6. 命令行参数解析函数 parse_arguments

void parse_arguments(int argc, char** argv, int* M, int* N, int* K, int* num_runs) {

if (argc != 5) {

fprintf(stderr, "Usage: %s <M> <N> <K> <num_runs>\n", argv[0]);

fprintf(stderr, "Example: %s 1024 1024 1024 10\n", argv[0]);

exit(EXIT_FAILURE);

}

// 解析参数并检查有效性

*M = atoi(argv[1]);

*N = atoi(argv[2]);

*K = atoi(argv[3]);

*num_runs = atoi(argv[4]);

if (*M <= 0 || *N <= 0 || *K <= 0 || *num_runs <= 0) {

fprintf(stderr, "Error: All parameters must be positive integers\n");

exit(EXIT_FAILURE);

}

}
  • 功能:解析命令行输入的矩阵维度(\(M\)、\(N\)、\(K\))和测试轮数(num_runs),并检查参数的有效性。
  • 参数检查:若参数数量不对或者参数为非正整数,程序会输出错误信息并退出。

7. 主函数 main

int main(int argc, char** argv) {

int M, N, K, num_runs;

parse_arguments(argc, argv, &M, &N, &K, &num_runs); // 解析命令行参数

// 执行性能测试

float avg_time_ms = test_performance(M, N, K, num_runs);

// 计算理论峰值(GEMM运算量:2*M*N*K FLOPs)

double flops = 2.0 * M * N * K;

double tflops = flops / (avg_time_ms * 1e9); // 转换为GFLOPS

// 输出结果

printf("FP8 GEMM Performance Test\n");

printf("------------------------\n");

printf("Parameters:\n");

printf(" M (rows of A): %d\n", M);

printf(" N (cols of B): %d\n", N);

printf(" K (common dimension): %d\n", K);

printf(" Num Runs: %d\n", num_runs);

printf("\nResults:\n");

printf(" Average Execution Time: %.2f ms\n", avg_time_ms);

printf(" Performance: %.2f TFLOPS\n", tflops);

return 0;

}
  • 功能:调用参数解析函数和性能测试函数,计算并输出矩阵乘法的平均执行时间和性能(以 TFLOPS 为单位)。
  • 性能计算:矩阵乘法的理论运算量为 2*M*N*K FLOPs,通过平均执行时间计算出性能(TFLOPS)。

代码使用方法

编译代码:

nvcc -o fp8_gemm fp8_gemm.cu

运行代码:

./fp8_gemm 1024 1024 1024 10

其中,1024 1024 1024 分别为矩阵的维度MNK,10 为测试轮数。你可以根据需要调整这些参数。

测试样例

5090在64x7168

### 关于5090 Testing Software or Tools 在信息技术领域中,测试软件和工具的选择通常取决于具体的项目需求和技术栈。虽然没有直接提到名为“5090”的特定测试软件或工具,但可以推测您可能是指某种标准、协议或者功能模块相关的测试解决方案。 以下是几种常见的测试软件和工具类别及其适用场景: #### 自动化测试工具 Selenium 是一种广泛使用的开源自动化测试框架,适用于 Web 应用程序的功能测试[^1]。它支持多种编程语言(如 Java、Python 和 C#),并能模拟真实用户的交互行为。如果您的项目涉及浏览器兼容性和功能性验证,“Selenium”可能是合适的选择。 对于桌面应用或其他类型的 GUI 测试,则可考虑 QTP(现称为 UFT One)。该商业产品提供了更全面的企业级特性集,适合复杂环境下的回归测试以及数据驱动测试方案开发。 #### 性能测试平台 鉴于当前市场趋势表明性能优化已成为许多组织关注的重点之一,因此了解一些主流性能分析工具有助于提升产品质量。JMeter 是一款流行的负载压力测试工具,能够评估服务器响应时间及吞吐量指标;而 LoadRunner 提供更为高级别的分布式仿真能力,允许大规模并发用户情景建模。 另外值得注意的是 Gatling 这样基于 Scala 构建的新一代网络基准测量器,在处理高精度计量方面表现出色。 #### 区块链追溯技术中的潜在关联 如果您所指代的 “5090” 实际上与区块链有关联的话,《Application Research of Blockchain Traceability Technology in the Field of Real Estate Traceability》一文中提及到通过不可篡改账本实现全程追踪记录的重要性[^3]。这提示我们或许存在某些专门针对此类应用场景设计的安全审计类插件/扩展包可供选用。 尽管上述列举并未确切命中编号为 "5090" 的具体实例名称,但从整体来看涵盖了大部分现代 IT 开发周期所需依赖的主要检测段集合体。 ```python import unittest from selenium import webdriver class TestExample(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() def test_example_page(self): driver = self.driver driver.get("http://www.example.com") # Replace URL accordingly. title = driver.title assert 'Example' in title # Example assertion. def tearDown(self): self.driver.quit() if __name__ == "__main__": unittest.main() ``` 以上代码片段展示了如何利用 Selenium 执行简单的单元测试案例。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aosudh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值