AI 工程师面试真题解析:Transformer + LLM 原理详解
《一条龙开发指南:MCP AI Agent 理论+项目实战开发你的MCP Server》
🧑💻 面试人物设定
- 姓名: 陈墨言
- 年龄: 32 岁
- 学历: 人工智能博士
- 工作年限: 7 年
- 公司背景: 某头部 AI 实验室
- 技术栈: Python, PyTorch, HuggingFace, Transformers, LLM, GPT, BERT
- 核心职责:
- 使用 LLM 构建多模态对话系统
- 对接 HuggingFace 模型进行 fine-tuning
- 使用 PyTorch 实现自定义模型架构
- 分析并优化模型推理性能
- 工作成果:
- 成功部署基于 LLaMA 的对话机器人
- 将模型推理速度提升 30%,显存占用降低 25%
🎤 第一轮面试:Transformer 基础考察
面试官: “你好,请介绍一下你最近参与的 AI 项目。”
程序员: “您好!我最近主要负责一个基于 LLM 的智能客服项目,使用 HuggingFace 提供的 BERT 和 LLaMA 模型进行 fine-tuning,并结合 PyTorch 自定义训练流程,最终在多个下游任务上取得了良好效果。”
面试官: “你能讲讲 Transformer 的整体结构吗?”
程序员: “当然可以。Transformer 主要由 Encoder 和 Decoder 构成,其中每个模块都包含 Multi-Head Attention 和 Feed Forward 层,并通过 Positional Encoding 引入序列信息。”
import torch
from torch.nn import MultiheadAttention
# 示例:Multi-head Attention
attn = MultiheadAttention(embed_dim=512, num_heads=8)
query = torch.randn(10, 32, 512) # (seq_len, batch_size, embed_dim)
key = value = query
attn_output, _ = attn(query, key, value)
🧠 第二轮面试:Attention 机制详解
面试官: “你是怎么理解 Self-Attention 的?”
程序员: “Self-Attention 是通过 Query、Key、Value 的点积计算相似度,再经过 softmax 得到权重,从而让模型关注不同位置的信息。”
# 手动实现缩放点积注意力
def scaled_dot_product_attention(q, k, v, mask=None):
d_k = q.size(-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores += mask * -1e9
p_attn = F.softmax(scores, dim=-1)
return torch.matmul(p_attn, v)
⚙️ 第三轮面试:LLM 与预训练模型
面试官: “你们是怎么使用 LLM 的?”
程序员: “我们使用 HuggingFace 提供的 transformers
库加载 LLaMA 或 ChatGLM 模型,并对其进行指令微调。”
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llama-7b")
model = AutoModelForCausalLM.from_pretrained("llama-7b")
inputs = tokenizer("你好,请介绍你自己", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
📊 第四轮面试:模型微调与优化
面试官: “你是怎么对 LLM 进行 fine-tuning 的?”
程序员: “我们通常使用 LoRA(Low-Rank Adaptation)来减少参数量,提升训练效率,并使用 PEFT 库进行高效微调。”
from peft import get_peft_model, LoraConfig, TaskType
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
model = get_peft_model(model, peft_config)
📈 第五轮面试:推理加速与部署
面试官: “你们是怎么优化模型推理速度的?”
程序员: “我们会使用量化(如 INT8)、蒸馏、缓存 Key-Value 等方式优化推理速度,并结合 ONNX Runtime 或 TensorRT 进行部署。”
# 示例:使用 TorchScript 导出模型
script_model = torch.jit.script(model)
torch.jit.save(script_model, "model.pt")
💬 结尾环节
面试官: “今天的面试就到这里,我们会综合评估你的表现,后续 HR 会联系你。”
程序员: “谢谢您今天的时间,期待有机会加入贵公司。”