Kubernetes 云原生实战:微服务部署与自动化运维详解

Kubernetes 云原生实战:微服务部署与自动化运维详解

《一条龙开发指南:MCP AI Agent 理论+项目实战开发你的MCP Server》

🧑‍💻 面试人物设定

  • 姓名: 周子睿
  • 年龄: 33 岁
  • 学历: 计算机硕士
  • 工作年限: 8 年
  • 公司背景: 某头部电商平台
  • 技术栈: Kubernetes, Helm, Prometheus, Grafana, Istio
  • 核心职责:
    • 使用 Kubernetes 管理微服务集群
    • 设计 Helm Chart 实现服务版本控制
    • 构建 Prometheus + Grafana 监控体系
    • 使用 Istio 实现服务治理
  • 工作成果:
    • 成功上线多个微服务模块,系统可用性提升至 99.99%
    • 将故障响应时间缩短至 2 分钟内

🎤 第一轮面试:Kubernetes 基础考察

面试官: “你好,请介绍一下你最近参与的 Kubernetes 项目。”

程序员: “您好!我最近主要负责一个基于 Kubernetes 的微服务部署项目,使用 Helm 管理服务版本,结合 Prometheus 实现全链路监控,并通过 Istio 实现流量控制和熔断机制。”

面试官: “你能写一个简单的 Deployment 和 Service 吗?”

程序员: “当然可以,比如部署一个 Nginx 应用并对外暴露访问。”

# nginx-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
spec:
  replicas: 3
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      containers:
      - name: nginx
        image: nginx:latest
        ports:
        - containerPort: 80

---

# nginx-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: nginx-service
spec:
  selector:
    app: nginx
  ports:
    - protocol: TCP
      port: 80
      targetPort: 80
  type: LoadBalancer

🧠 第二轮面试:Helm 包管理

面试官: “你是怎么使用 Helm 的?”

程序员: “我们会定义 Helm Chart 来统一管理服务模板,并通过版本控制实现滚动更新。”

# 创建 Helm Chart
helm create myservice

# 安装服务
helm install my-release ./myservice --set replicaCount=3

# 升级服务
helm upgrade my-release ./myservice --set image.tag=1.1.0
# values.yaml
defaults:
  replicaCount: 2
  image:
    repository: nginx
    tag: latest
  service:
    type: ClusterIP
    port: 80
# templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: {{ include "myservice.fullname" . }}
spec:
  replicas: {{ .Values.defaults.replicaCount }}
  selector:
    matchLabels:
      app: {{ include "myservice.name" . }}
  template:
    metadata:
      labels:
        app: {{ include "myservice.name" . }}
    spec:
      containers:
      - name: {{ .Chart.Name }}
        image: {{ .Values.defaults.image.repository }}:{{ .Values.defaults.image.tag }}
        ports:
        - containerPort: {{ .Values.defaults.service.port }}

⚙️ 第三轮面试:Prometheus + Grafana 监控系统

面试官: “你们是怎么使用 Prometheus 的?”

程序员: “我们使用 Prometheus 收集指标数据,并通过 Grafana 实现可视化展示。”

# prometheus.yml
scrape_configs:
  - job_name: 'kubernetes-nodes'
    kubernetes_sd_configs:
      - role: node

  - job_name: 'kubernetes-services'
    kubernetes_sd_configs:
      - role: service

  - job_name: 'myservice'
    static_configs:
      - targets: ['myservice.default.svc.cluster.local']
# 安装 Prometheus Operator
kubectl apply -f https://raw.githubusercontent.com/coreos/prometheus-operator/master/example/prometheus-operator-crd/monitoring.coreos.com_prometheuses.yaml
kubectl apply -f https://raw.githubusercontent.com/coreos/prometheus-operator/master/bundle.yaml

# 安装 Grafana
helm repo add grafana https://grafana.github.io/helm-charts
helm install grafana grafana/grafana

📊 第四轮面试:Istio 服务治理

面试官: “你是怎么使用 Istio 的?”

程序员: “我们使用 Istio 实现服务网格化管理,包括流量控制、熔断、限流等功能。”

# virtual-service.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: myservice-vs
spec:
  hosts:
  - "myservice.example.com"
  gateways:
  - my-gateway
  http:
  - route:
    - destination:
        host: myservice
        port:
          number: 80

---

# destination-rule.yaml
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: myservice-dr
spec:
  host: myservice
  trafficPolicy:
    loadBalancer:
      simple: ROUND_ROBIN
    outlierDetection:
      consecutiveErrors: 5
      interval: 1m
      baseEjectionTime: 10m

📈 第五轮面试:CI/CD 自动化流水线

面试官: “你是怎么实现 CI/CD 的?”

程序员: “我们使用 Jenkins + ArgoCD 实现持续集成与持续交付。”

// Jenkinsfile
pipeline {
    agent any

    stages {
        stage('Build') {
            steps {
                sh 'docker build -t myservice:latest .'
            }
        }
        stage('Push Image') {
            steps {
                withDockerRegistry(['docker-hub']) {
                    sh 'docker push myservice:latest'
                }
            }
        }
        stage('Deploy to Kubernetes') {
            steps {
                sh 'kubectl set image deployment/myservice myservice=myservice:latest'
            }
        }
    }
}

💬 结尾环节

面试官: “今天的面试就到这里,我们会综合评估你的表现,后续 HR 会联系你。”

程序员: “谢谢您今天的时间,期待有机会加入贵公司。”

《一条龙开发指南:MCP AI Agent 理论+项目实战开发你的MCP Server》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值