大型电商架构亿级流量电商详情页系统--实战 缓存同步,热点key统计 降级

   35

我们之前的三十讲,主要是在讲解redis如何支撑海量数据、高并发读写、高可用服务的架构,redis架构

redis架构,在我们的真正类似商品详情页读高并发的系统中,redis就是底层的缓存存储的支持

从这一讲开始,我们正式开始做业务系统的开发

亿级流量以上的电商网站的商品详情页的系统,商品详情页系统,大量的业务,十几个人做一两年,堆出来复杂的业务系统

几十个小时的课程,讲解复杂的业务

把整体的架构给大家讲解清楚,然后浓缩和精炼里面的业务,提取部分业务,做一些简化,把整个详情页系统的流程跑出来

架构,骨架,有少量的业务,血和肉,把整个项目串起来,在业务背景下,去学习架构

讲解商品详情页系统,缓存架构,90%大量的业务代码(没有什么技术含量),10%的最优技术含量的就是架构,上亿流量,每秒QPS几万,上十万的,读并发

读并发,缓存架构

1、上亿流量的商品详情页系统的多级缓存架构

很多人以为,做个缓存,其实就是用一下redis,访问一下,就可以了,简单的缓存

做复杂的缓存,支撑电商复杂的场景下的高并发的缓存,遇到的问题,非常非常之多,绝对不是说简单的访问一下redsi就可以了

采用三级缓存:nginx本地缓存+redis分布式缓存+tomcat堆缓存的多级缓存架构

时效性要求非常高的数据:库存

一般来说,显示的库存,都是时效性要求会相对高一些,因为随着商品的不断的交易,库存会不断的变化

当然,我们就希望当库存变化的时候,尽可能更快将库存显示到页面上去,而不是说等了很长时间,库存才反应到页面上去

时效性要求不高的数据:商品的基本信息(名称、颜色、版本、规格参数,等等)

时效性要求不高的数据,就还好,比如说你现在改变了商品的名称,稍微晚个几分钟反应到商品页面上,也还能接受

商品价格/库存等时效性要求高的数据,而且种类较少,采取相关的服务系统每次发生了变更的时候,直接采取数据库和redis缓存双写的方案,这样缓存的时效性最高

商品基本信息等时效性不高的数据,而且种类繁多,来自多种不同的系统,采取MQ异步通知的方式,写一个数据生产服务,监听MQ消息,然后异步拉取服务的数据,更新tomcat jvm缓存+redis缓存

nginx+lua脚本做页面动态生成的工作,每次请求过来,优先从nginx本地缓存中提取各种数据,结合页面模板,生成需要的页面

如果nginx本地缓存过期了,那么就从nginx到redis中去拉取数据,更新到nginx本地

如果redis中也被LRU算法清理掉了,那么就从nginx走http接口到后端的服务中拉取数据,数据生产服务中,现在本地tomcat里的jvm堆缓存中找,ehcache,如果也被LRU清理掉了,那么就重新发送请求到源头的服务中去拉取数据,然后再次更新tomcat堆内存缓存+redis缓存,并返回数据给nginx,nginx缓存到本地

图种右上角 耗费多次请求链路,nginx到tomcat,tomcat到redis来回

2、多级缓存架构中每一层的意义

nginx本地缓存,抗的是热数据的高并发访问,一般来说,商品的购买总是有热点的,比如每天购买iphone、nike、海尔等知名品牌的东西的人,总是比较多的

这些热数据,利用nginx本地缓存,由于经常被访问,所以可以被锁定在nginx的本地缓存内

大量的热数据的访问,就是经常会访问的那些数据,就会被保留在nginx本地缓存内,那么对这些热数据的大量访问,就直接走nginx就可以了

那么大量的访问,直接就可以走到nginx就行了,不需要走后续的各种网络开销了

redis分布式大规模缓存,抗的是很高的离散访问,支撑海量的数据,高并发的访问,高可用的服务

redis缓存最大量的数据,最完整的数据和缓存,1T+数据; 支撑高并发的访问,QPS最高到几十万; 可用性,非常好,提供非常稳定的服务

nginx本地内存有限,也就能cache住部分热数据,除了各种iphone、nike等热数据,其他相对不那么热的数据,可能流量会经常走到redis那里

利用redis cluster的多master写入,横向扩容,1T+以上海量数据支持,几十万的读写QPS,99.99%高可用性,那么就可以抗住大量的离散访问请求

tomcat jvm堆内存缓存,主要是抗redis大规模灾难的,如果redis出现了大规模的宕机,导致nginx大量流量直接涌入数据生产服务,那么最后的tomcat堆内存缓存至少可以再抗一下,不至于让数据库直接裸奔

同时tomcat jvm堆内存缓存,也可以抗住redis没有cache住的最后那少量的部分缓存

36

最经典的缓存+数据库读写的模式,cache aside pattern

1、Cache Aside Pattern

(1)读的时候,先读缓存,缓存没有的话,那么就读数据库,然后取出数据后放入缓存,同时返回响应

(2)更新的时候,先删除缓存,然后再更新数据库

2、为什么是删除缓存,而不是更新缓存呢?

原因很简单,很多时候,复杂点的缓存的场景,因为缓存有的时候,不简单是数据库中直接取出来的值

商品详情页的系统,修改库存,只是修改了某个表的某些字段,但是要真正把这个影响的最终的库存计算出来,可能还需要从其他表查询一些数据,然后进行一些复杂的运算,才能最终计算出

现在最新的库存是多少,然后才能将库存更新到缓存中去

比如可能更新了某个表的一个字段,然后其对应的缓存,是需要查询另外两个表的数据,并进行运算,才能计算出缓存最新的值的

更新缓存的代价是很高的

是不是说,每次修改数据库的时候,都一定要将其对应的缓存去跟新一份?也许有的场景是这样的,但是对于比较复杂的缓存数据计算的场景,就不是这样了

如果你频繁修改一个缓存涉及的多个表,那么这个缓存会被频繁的更新,频繁的更新缓存

但是问题在于,这个缓存到底会不会被频繁访问到???

举个例子,一个缓存涉及的表的字段,在1分钟内就修改了20次,或者是100次,那么缓存跟新20次,100次; 但是这个缓存在1分钟内就被读取了1次,有大量的冷数据

28法则,黄金法则,20%的数据,占用了80%的访问量

实际上,如果你只是删除缓存的话,那么1分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低

每次数据过来,就只是删除缓存,然后修改数据库,如果这个缓存,在1分钟内只是被访问了1次,那么只有那1次,缓存是要被重新计算的,用缓存才去算缓存

其实删除缓存,而不是更新缓存,就是一个lazy计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算

mybatis,hibernate,懒加载,思想

查询一个部门,部门带了一个员工的list,没有必要说每次查询部门,都里面的1000个员工的数据也同时查出来啊

80%的情况,查这个部门,就只是要访问这个部门的信息就可以了

先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询1000个员工

37

马上开始去开发业务系统

从哪一步开始做,从比较简单的那一块开始做,实时性要求比较高的那块数据的缓存去做

实时性比较高的数据缓存,选择的就是库存的服务

库存可能会修改,每次修改都要去更新这个缓存数据; 每次库存的数据,在缓存中一旦过期,或者是被清理掉了,前端的nginx服务都会发送请求给库存服务,去获取相应的数据

库存这一块,写数据库的时候,直接更新redis缓存

实际上没有这么的简单,这里,其实就涉及到了一个问题,数据库与缓存双写,数据不一致的问题

围绕和结合实时性较高的库存服务,把数据库与缓存双写不一致问题以及其解决方案,给大家讲解一下

数据库与缓存双写不一致,很常见的问题,大型的缓存架构中,第一个解决方案

大型的缓存架构全部讲解完了以后,整套架构是非常复杂,架构可以应对各种各样奇葩和极端的情况

也有一种可能,不是说,来讲课的就是超人,万能的

讲课,就跟写书一样,很可能会写错,也可能有些方案里的一些地方,我没考虑到

也可能说,有些方案只是适合某些场景,在某些场景下,可能需要你进行方案的优化和调整才能适用于你自己的项目

大家觉得对这些方案有什么疑问或者见解,都可以找我,沟通一下

如果的确我觉得是我讲解的不对,或者有些地方考虑不周,那么我可以在视频里补录,更新到网站上面去

多多包涵


1、最初级的缓存不一致问题以及解决方案

问题:先修改数据库,再删除缓存,如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据出现不一致

解决思路

先删除缓存,再修改数据库,如果删除缓存成功了,如果修改数据库失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致

因为读的时候缓存没有,则读数据库中旧数据,然后更新到缓存中

2、比较复杂的数据不一致问题分析

数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改

一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中

数据变更的程序完成了数据库的修改

完了,数据库和缓存中的数据不一样了。。。。

3、为什么上亿流量高并发场景下,缓存会出现这个问题?

只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题

其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就1万次,那么很少的情况下,会出现刚才描述的那种不一致的场景

但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况

高并发了以后,问题是很多的

4、数据库与缓存更新与读取操作进行异步串行化(工程eshop-inventory)

更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个jvm内部的队列中

读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个jvm内部的队列中

一个队列对应一个工作线程

每个工作线程串行拿到对应的操作,然后一条一条的执行

这样的话,一个数据变更的操作,先执行,删除缓存,然后再去更新数据库,但是还没完成更新

此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成

这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可

待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中

如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回; 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值

5、高并发的场景下,该解决方案要注意的问题

(1)读请求长时阻塞

由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回

该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库

务必通过一些模拟真实的测试,看看更新数据的频繁是怎样的

另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作

如果一个内存队列里居然会挤压100个商品的库存修改操作,每隔库存修改操作要耗费10ms区完成,那么最后一个商品的读请求,可能等待10 * 100 = 1000ms = 1s后,才能得到数据

这个时候就导致读请求的长时阻塞

一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会hang多少时间,如果读请求在200ms返回,如果你计算过后,哪怕是最繁忙的时候,积压10个更新操作,最多等待200ms,那还可以的

如果一个内存队列可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少

其实根据之前的项目经验,一般来说数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的

针对读高并发,读缓存架构的项目,一般写请求相对读来说,是非常非常少的,每秒的QPS能到几百就不错了

一秒,500的写操作,5份,每200ms,就100个写操作

单机器,20个内存队列,每个内存队列,可能就积压5个写操作,每个写操作性能测试后,一般在20ms左右就完成

那么针对每个内存队列中的数据的读请求,也就最多hang一会儿,200ms以内肯定能返回了

写QPS扩大10倍,但是经过刚才的测算,就知道,单机支撑写QPS几百没问题,那么就扩容机器,扩容10倍的机器,10台机器,每个机器20个队列,200个队列

大部分的情况下,应该是这样的,大量的读请求过来,都是直接走缓存取到数据的

少量情况下,可能遇到读跟数据更新冲突的情况,如上所述,那么此时更新操作如果先入队列,之后可能会瞬间来了对这个数据大量的读请求,但是因为做了去重的优化,所以也就一个更新缓存的操作跟在它后面

等数据更新完了,读请求触发的缓存更新操作也完成,然后临时等待的读请求全部可以读到缓存中的数据

(2)读请求并发量过高

这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时hang在服务上,看服务能不能抗的住,需要多少机器才能抗住最大的极限情况的峰值

但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大

按1:99的比例计算读和写的请求,每秒5万的读QPS,可能只有500次更新操作

如果一秒有500的写QPS,那么要测算好,可能写操作影响的数据有500条,这500条数据在缓存中失效后,可能导致多少读请求,发送读请求到库存服务来,要求更新缓存

一般来说,1:1,1:2,1:3,每秒钟有1000个读请求,会hang在库存服务上,每个读请求最多hang多少时间,200ms就会返回

在同一时间最多hang住的可能也就是单机200个读请求,同时hang住

单机hang200个读请求,还是ok的

1:20,每秒更新500条数据,这500秒数据对应的读请求,会有20 * 500 = 1万

1万个读请求全部hang在库存服务上,就死定了

(3)多服务实例部署的请求路由

可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过nginx服务器路由到相同的服务实例上

(4)热点商品的路由问题,导致请求的倾斜

万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能造成某台机器的压力过大

就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是特别大

但是的确可能某些机器的负载会高一些

38 安装数据库

后面写的各种代码,还是要基于mysql去做一些开发的,因为缓存的底层的数据存储肯定是数据库

mysql数据库,还是要部署一下的

eshop-cache04

先用yum安装mysql server

yum install -y mysql-server

service mysqld start
chkconfig mysqld on

yum install -y mysql-connector-java

39


1、pom.xml

maven下载这些依赖的时候,会非常非常的慢,根据不同人的网络环境,也不一样

你就在eclipse里面,观察每个依赖的下载的情况

如果说觉得下载的很慢,就是卡在一个地方,好长时间不能下载,进度条都不动了

那就手动下载maven依赖,mysql connector java maven,进到maven中央依赖库里面,去手动下载对应版本的jar包,可以用迅雷,会比较快速一些

你需要手动将jar包拷贝到你本地的maven仓库的对应的目录中去

可能对应的目录不存在,那就自己手动创建; 可能对应的目录已经存在,那么需要你将里面的东西先删除,然后拷贝自己下载的jar包进去

然后需要执行mvn install命令,手动安装依赖

mvn install:install-file -Dfile=F:\apache-maven-3.0.5\mvn_repo\redis\clients\jedis\2.5.2\jedis-2.5.2.jar -DgroupId=redis.clients -DartifactId=jedis -Dversion=2.5.2 -Dpackaging=jar

可能需要将eclipse强制关闭,任务管理器里面,直接强制结束任务,关闭eclipse,重新打开

右击工程,强制重新更新maven的依赖

然后就会继续去下载接下来的依赖包

我大概手动下载了将近10个依赖,然后才顺利的下载完了所有的依赖

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.2.5.RELEASE</version>
    </parent>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-thymeleaf</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jdbc</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <dependency>
            <groupId>org.mybatis</groupId>
            <artifactId>mybatis-spring</artifactId>
            <version>1.2.2</version>
        </dependency>
        <dependency>
            <groupId>org.mybatis</groupId>
            <artifactId>mybatis</artifactId>
            <version>3.2.8</version>
        </dependency>
        <dependency>
            <groupId>org.apache.tomcat</groupId>
            <artifactId>tomcat-jdbc</artifactId>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.1.43</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

    <repositories>
        <repository>
            <id>spring-milestone</id>
            <url>https://repo.spring.io/libs-release</url>
        </repository>
    </repositories>

    <pluginRepositories>
        <pluginRepository>
            <id>spring-milestone</id>
            <url>https://repo.spring.io/libs-release</url>
        </pluginRepository>
    </pluginRepositories>

2、com.roncoo.eshop.inventory.Application

我们是直接讲解项目的,项目中遇到的一些技术,比如说redis,是缓存架构topic里面非常重要的一个环节,那我们当然会花费很大的篇幅去仔细讲解

但是比如spring boot、mybatis、zookeeper、storm

有些技术,是默认大家要会的,spring boot,mybatis,你说你都不会,不行,自己去学一下

zookeeper,kafka,技术,直接带着大家部署,简单介绍一下,就开始用了,如果真的是要用这个技术,做项目,还是得上网自己去查阅一些资料,学习这个技术

storm,会带着大家把20%的核心基础知识学习一下,作为java程序员,可以开发就行了

一个项目课程,涉及了十几种技术,我不可能全都给你按照从入门到精通的方式,全部讲解一遍

@EnableAutoConfiguration
@SpringBootApplication
@ComponentScan
@MapperScan("com.roncoo.eshop.inventory.mapper")
public class Application {
 
    @Bean
    @ConfigurationProperties(prefix="spring.datasource")
    public DataSource dataSource() {
        return new org.apache.tomcat.jdbc.pool.DataSource();
    }
    
    @Bean
    public SqlSessionFactory sqlSessionFactoryBean() throws Exception {
        SqlSessionFactoryBean sqlSessionFactoryBean = new SqlSessionFactoryBean();
        sqlSessionFactoryBean.setDataSource(dataSource());
        PathMatchingResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
        sqlSessionFactoryBean.setMapperLocations(resolver.getResources("classpath:/mybatis/*.xml"));
        return sqlSessionFactoryBean.getObject();
    }
 
    @Bean
    public PlatformTransactionManager transactionManager() {
        return new DataSourceTransactionManager(dataSource());
    }

    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }
 
}

3、com.roncoo.eshop.inventory.model.User

4、com.roncoo.eshop.inventory.mapper.UserMapper

public interface UserMapper {
    public User findUserInfo();
}

5、com.roncoo.eshop.inventory.service.UserService

6、UserController

@Controller
public class UserController {
 
    @Autowired
    private UserService userService;
 
    @RequestMapping("/getUserInfo")
    @ResponseBody
    public User getUserInfo() {
        User user = userService.getUserInfo();
        return user;
    }

}

7、resources/Application.properties

spring.datasource.url=jdbc:mysql://127.0.0.1:3306/test
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.jdbc.Driver

8、resources/mybatis/UserMapper.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.roncoo.eshop.inventory.mapper.UserMapper">
 
  <select id="findUserInfo" resultType="com.roncoo.eshop.inventory.model.User">
    select name,age from user;
  </select>
 
</mapper>

9、测试spring boot+mybatis的整合

在数据库中创建一个eshop database,创建一个eshop账号和密码,创建一个user表,里面插入一条数据,张三和25岁

create database if not exists eshop;
grant all privileges on eshop.* to 'eshop'@'%' identified by 'eshop';
create table user(name varchar(255), age int)
insert into user values('张三', 25)

启动Application程序,访问getUserInfo接口,能否从mysql中查询数据,并返回到页面上

如果可以,说明spring boot+mybatis整合成功

10、整合Jedis Cluster

<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
</dependency>

Application

@Bean
public JedisCluster JedisClusterFactory() {
    Set<HostAndPort> jedisClusterNodes = new HashSet<HostAndPort>();
    jedisClusterNodes.add(new HostAndPort("192.168.31.19", 7003));
    jedisClusterNodes.add(new HostAndPort("192.168.31.19", 7004));
    jedisClusterNodes.add(new HostAndPort("192.168.31.227", 7006));
    JedisCluster jedisCluster = new JedisCluster(jedisClusterNodes);
    return jedisCluster;
}

@Repository("redisDAO")   
public class RedisDAOImpl implements RedisDAO {

    @Resource
    private JedisCluster jedisCluster;
    
    @Override
    public void set(String key, String value) {
        jedisCluster.set(key, value);
    }

    @Override
    public String get(String key) {
        return jedisCluster.get(key);
    }

}

UserServiceImpl

@Override
public User getCachedUserInfo() {
    redisDAO.set("cached_user", "{\"name\": \"zhangsan\", \"age\": 25}") ;  
    String json = redisDAO.get("cached_user");  
    JSONObject jsonObject = JSONObject.parseObject(json);
    
    User user = new User();
    user.setName(jsonObject.getString("name"));  
    user.setAge(jsonObject.getInteger("age")); 
    
    return user;
}

UserController

@RequestMapping("/getCachedUserInfo")
@ResponseBody
public User getCachedUserInfo() {
    User user = userService.getCachedUserInfo();
    return user;
}
 

39-43_在库存服务中实现缓存与数据库双写一致性保障方案(四)

见 43中代码


更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个jvm内部的队列中

读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个jvm内部的队列中

一个队列对应一个工作线程

每个工作线程串行拿到对应的操作,然后一条一条的执行

这样的话,一个数据变更的操作,先执行,删除缓存,然后再去更新数据库,但是还没完成更新

此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成

这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可

待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中

如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回; 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值

int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

(queueNum - 1) & hash

1、线程池+内存队列初始化

@Bean
public ServletListenerRegistrationBean servletListenerRegistrationBean(){
    ServletListenerRegistrationBean servletListenerRegistrationBean = new ServletListenerRegistrationBean();
    servletListenerRegistrationBean.setListener(new InitListener());
    return servletListenerRegistrationBean;
}

java web应用,做系统的初始化,一般在哪里做呢?

ServletContextListener里面做,listener,会跟着整个web应用的启动,就初始化,类似于线程池初始化的构建

spring boot应用,Application,搞一个listener的注册

2、两种请求对象封装

3、请求异步执行Service封装

4、请求处理的工作线程封装

5、两种请求Controller接口封装

6、读请求去重优化

如果一个读请求过来,发现前面已经有一个写请求和一个读请求了,那么这个读请求就不需要压入队列中了

因为那个写请求肯定会更新数据库,然后那个读请求肯定会从数据库中读取最新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值