在本书前面第6章内容中曾经讲解过Dueling DQN(Dueling Deep Q-Network)算法的基础知识,这是一种深度强化学习算法,它是经典的深度 Q 网络(Deep Q-Network,DQN)的扩展和改进版本。Dueling DQN 主要用于解决强化学习任务,其中代理需要学习如何在不同的状态下选择最优的行动,以最大化累积奖励。在本章的内容中,将进一步详细讲解Dueling DQN算法的知识,介绍其核心内容和用法,为读者步入后面知识的学习打下基础。
8.1 Dueling DQN 算法原理
Dueling DQN 的核心思想是将 Q 值函数分解为两个部分:状态值函数(Value function)和优势函数(Advantage function)。这种分解允许代理更好地理解不同状态下的行动价值,从而提高学习效率和性能。
8.1.1 Dueling DQN 的动机和核心思想
Dueling DQN 的核心思想是通过分解 Q 值函数(行动-状态值函数)来提高深度 Q 网络(Deep Q-Network,DQN)的学习效率和性能,它的主要动机是解决传统 DQN 存在的两个问题:高方差和低效率,具体说明如下所示: