(8-1)Dueling DQN 算法:Dueling DQN 算法原理

在本书前面第6章内容中曾经讲解过Dueling DQN(Dueling Deep Q-Network)算法的基础知识,这是一种深度强化学习算法,它是经典的深度 Q 网络(Deep Q-Network,DQN)的扩展和改进版本。Dueling DQN 主要用于解决强化学习任务,其中代理需要学习如何在不同的状态下选择最优的行动,以最大化累积奖励。在本章的内容中,将进一步详细讲解Dueling DQN算法的知识,介绍其核心内容和用法,为读者步入后面知识的学习打下基础。

8.1  Dueling DQN 算法原理

Dueling DQN 的核心思想是将 Q 值函数分解为两个部分:状态值函数(Value function)和优势函数(Advantage function)。这种分解允许代理更好地理解不同状态下的行动价值,从而提高学习效率和性能。

8.1.1  Dueling DQN 的动机和核心思想

Dueling DQN 的核心思想是通过分解 Q 值函数(行动-状态值函数)来提高深度 Q 网络(Deep Q-Network,DQN)的学习效率和性能,它的主要动机是解决传统 DQN 存在的两个问题:高方差和低效率,具体说明如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值