一 、目标检测算法
1. R-CNN
a . 算法步骤
- 使用启发式搜索算法来选择锚框(选出多个锚框大小可能不一,需要使用Rol pooling)
- 使用预训练好的模型(去掉分类层)对每个锚框进行特征抽取(如VGG,AlexNet…)
- 训练一个SVM来对每个类进行分类
- 训练一个线性回归模型来预测边缘框偏移
b . Rol Pooling
每个锚框的大小是不一样的大的,所以需要对锚框进行处理
2 . Fast R-CNN
R-CNN对于每个锚框都有重复的部分,所以计算的时候会有重复计算,没有共享计算.而 Fast R-CNN的改进就是不是对锚框进行特征抽取,而是直接对整个图片进行特征抽取,对对应的锚框位置直接映射到了抽取完成的图片的位置,然后再进行向前传播
3 . Faster R-CNN
4 . Mask R-CNN
5 . 总结
二 、 SSD (单发多框检测)
总结:
- SSD通过单神经网络来检测模型
- 以每个像素为中心的产生多个锚框
- 在多个段的输出上进行多尺度的检测(下面的检测小物体,上面的段检测大的物体)
三、 YOLO(你只看一次)
四 、 转置卷积
大多的时候取得的都是图像的上采样,也不是卷积的一个逆运算,最后也是一个卷积运算
上采样:将我们的输入变大
<