一、归并排序概述
归并排序是一种基于分治思想的经典排序算法。它的核心操作分为三个主要步骤:分割、排序和合并。
首先是分割步骤,将待排序的数组不断地分成更小的子数组,直到每个子数组中只有一个元素。例如,对于一个包含多个元素的数组,不断地进行对半分割,直到每个子部分都只有一个元素为止。
接着是排序步骤,由于单个元素的子数组本身就是有序的,所以在这个阶段实际上并没有真正的排序操作。
最后是合并步骤,将两个已排序的子数组合并成一个更大的有序数组。在合并过程中,通过比较两个子数组的元素,将较小的元素依次放入新的数组中,直到两个子数组中的所有元素都被处理完毕。这个过程不断重复,最终将所有的子数组合并成一个完全有序的数组。
归并排序的时间复杂度为 ,其中 是待排序数组的长度。这是因为每次分割操作将问题规模减半,而合并操作的时间复杂度与问题规模呈线性关系。归并排序的稳定性使得它在某些特定的应用场景中具有优势,特别是当需要保持相等元素的相对顺序时。总的来说,归并排序以其高效和稳定的特性,在计算机科学的各种领域中都有广泛的应用。
二、归并排序的核心步骤
(一)分割过程
- 递归实现分割:按照深度优先方式,先拆左边再拆右边,设定递归终止条件。在归并排序中,递归实现分割是一种常见的方法。首先,找到数组的中间位置,将数组分为左右两部分。然后,对左右两部分分别进行递归调用,继续分割,直到每个子数组中只有一个元素为止。这个过程可以看作是深度优先的方式,先深入到最左边的子数组进行分割,然后再逐步返回并处理右边的子数组。递归的终止条件是当子数组的长度为 1 或 0 时,因为单个元素的子数组本身就是有序的。
例如,对于一个长度为 8 的数组,首先找到中间位置,分为左右两个长度为 4 的子数组。然后对这两个子数组继续进行分割,直到每个子数组的长度为 1。在这个过程中,递归的深度为 。
- 非递归实现分割:借助栈机制,考虑细节进行深度优先的拆分过程。非递归实现分割可以借助栈的数据结构来模拟递归的过程。首先,将整个数组的范围压入栈中。然后,从栈中弹出一个范围,进行分割,并将分割后的两个子范围压入栈中。重复这个过程,直到栈为空。在这个过程中,需要考虑一些细节问题,比如如何确定子数组的范围、如何处理边界情况等。
例如,假设我们有一个长度为 8 的数组,初始时将范围 [0, 7] 压入栈中。弹出这个范围后,将其分为 [0, 3] 和 [4, 7],并将这两个子范围压入栈中。接着,继续弹出栈顶的范围进行分割,直到每个子数组的长度为 1。
(二)合并过程
- 比较两个子数组元素,较小元素放入新数组,对应指针前进。在合并过程中,首先比较两个已排序的子数组的首元素。将较小的元素放入一个新的数组中,并将对应子数组的指针向前移动一位。然后继续比较两个子数组的下一个元素,重复这个过程,直到其中一个子数组的所有元素都被处理完毕。
例如,假设有两个子数组 A=[2, 4, 6] 和 B=[1, 3, 5]。首先比较 A [0] 和 B [0],因为 1<2,所以将 1 放入新数组中,并将 B 的指针向前移动一位。接着比较 A [0] 和 B [1],因为 2<3,所以将 2 放入新数组中,并将 A 的指针向前移动一位。
- 处理剩余元素,直接放入新数组,因每一组内元素有序。当一个子数组的所有元素都被处理完毕后,另一个子数组中可能还有剩余的元素。由于每个子数组本身是有序的,所以可以直接将剩余的元素依次放入新数组中。
例如,在上一步的例子中,当比较完 A [2] 和 B [2] 后,B 子数组中的元素已经全部处理完毕,而 A 子数组中还有元素 4 和 6。这时,可以直接将 4 和 6 依次放入新数组中。
三、归并排序的代码实现
(一)多种语言示例
- C 语言代码实现:
在 C 语言中实现归并排序通常需要以下几个关键步骤。首先是申请空间,就像这样:
#define N 7 void merge(int arr[], int low, int mid, int high){ int i, k; int *tmp = (int *)malloc((high-low+1)*sizeof(int)); |
接着在合并过程中,比较两个子数组的元素,将较小的元素放入临时数组tmp中:
for(k=0; left_low<=left_high && right_low<=right_high; k++){ if(arr[left_low]<=arr[right_low]){ tmp[k] = arr[left_low++]; }else{ tmp[k] = arr[right_low++]; } } |
最后,如果一个子数组还有剩余元素,直接复制到临时数组中,并将临时数组的元素复制回原数组:
if(left_low <= left_high){ for(i=left_low;i<=left_high;i++) tmp[k++] = arr[i]; } if(right_low <= right_high){ for(i=right_low; i<=right_high; i++) tmp[k++] = arr[i]; } for(i=0; i<high-low+1; i++) arr[low+i] = tmp[i]; free(tmp); &n |