深度学习算法面试题总结

1.  什么是凸集、凸函数、凸学习问题?

凸集:若对集合C中任意两点u和v,连接他们的线段仍在集合C中,那么集合C是凸集。

公式表示为:αu+(1-α)v∈C α∈[0, 1]

凸函数:凸集上的函数是凸函数。凸函数的每一个局部极小值也是全局极小值( f(x) = 0.5x^2 )。

公式表示为:f(αu + (1-α)v) ≤ αf(u)+ (1-α)f(v)

2.  L0、L1、L2正则化?

L0范数:计算向量中非0元素的个数。

L1范数:计算向量中各元素绝对值之和。

L2范数:计算向量中各元素平方和的开方。

L0范数和L1范数目的是使参数稀疏化。L1范数比L0范数容易优化求解。

L2范数是防止过拟合,提高模型的泛化性能。

3.  无监督学习方法有哪些?

强化学习、K-means 聚类、自编码、受限波尔兹曼机

4.  空洞卷积(dilated convolution)的理解?

基于FCN的语义分割问题中,需保持输入图像与输出特征图的size相同。

若使用池化层,则降低了特征图size,需在高层阶段使用上采样,由于池化会损失信息,所以此方法会影响导致精度降低;

若使用较小的卷积核尺寸,虽可以实现输入输出特征图的size相同,但输出特征图的各个节点感受野小;

若使用较大的卷积核尺寸,由于需增加特征图通道数,此方法会导致计算量较大;

所以,引入空洞卷积(dilatedconvolution),在卷积后的特征图上进行0填充扩大特征图size,这样既因为有卷积核增大感受野,也因为0填充保持计算点不变。

5.  增大感受野的方法?

空洞卷积、池化操作、较大卷积核尺寸的卷积操作

6.  卷积层中感受野大小的计算?

卷积层的感受野大小与其之前层的卷积核尺寸和步长有关,与padding无关。基于从深层向浅层递归计算的方式。

计算公式为:Fj-1 = Kj + (Fj - 1)*Sj(最后一层特征图的感受野大小是其计算卷积核大小)

7.  梯度下降法和牛顿法的优缺点?

优点:梯度下降法:可用于数据量较大的情况;

牛顿法:收敛速度更快;

缺点:梯度下降法:每一步可能不是向着最优解的方向;

牛顿法:每次迭代的时间长;需要计算一阶和二阶导数;

8.  解决训练样本类别不平衡问题?

现象:训练样本中,正负样本数量的比例较大。

1. 过采样。增加正例样本数量,使得正负样本数量接近,然后再进行学习。

2. 欠采样。去除反例样本数量,使得正负样本数量接近,然后再进行学习。

3. 设置阈值。基于原始数据集学习,当使用已训练好的分类器进行预测时,将正负样本数量的比例作为阈值嵌入到决策过程中。

9.  各个激活函数的优缺点?

Sigmoid激活函数 缺点:

1. 不是关于原点对称;

2. 需要计算exp

Tanh 激活函数 优点:

1. 关于原点对称

2. 比sigmoid梯度更新更快

ReLU激活函数 优点:

1. 神经元输出为正时,没有饱和区

2. 计算复杂度低,效率高

3. 在实际应用中,比sigmoid、tanh更新更快

4. 相比于sigmoid更加符合生物特性

ReLU激活函数 缺点:

1. 神经元输出为负时,进入了饱和区

2. 神经元的输出在非0中心

3. 使得数据存在Active ReLU、Dead ReLU(当wx+b<0时,将永远无法进行权值更新,此时的神经元将死掉)的问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值