FFmpeg —— 查看nvidia各型号显卡对硬件加速的支持、算力能力大小,及各版本cuda工具下载链接(NVIDIA官方)

本文介绍了如何查看NVIDIA显卡对FFmpeg硬件加速的支持情况,包括显卡类型、编解码支持和算力检查。通过Nvidia官方资源,可以确定显卡是否适合硬件编解码,并提供了CUDA工具包的不同版本下载链接,以帮助优化音视频处理性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🔔 FFmpeg 相关音视频技术、疑难杂症文章合集(掌握后可自封大侠 ⓿_⓿)(记得收藏,持续更新中…)


起因

     起初了解学习掌握ffmpeg的编解码,以为只是学会了相关API的使用就可以了,但现实却不是这样的。视频、音频、字幕等都是需要仔细的学习了解,更是对一个行业的涉足。

     在对ffmpeg熟悉后,了解到硬件加速对解码或编码的影响,业内人士对编码方式划分出了"软解码"、“硬解码”、“软编码”、"硬编码"。那么"软"操作是指使用在cpu的基础上;而"硬"操作是指在gpu也就是显卡上的基础上进行的计算。

     ""编解码是使用cpu来运算,所以兼容性非常好,但这样一来会占用大量的cpu操作,使得除了编解码外的进程或事项就无法使用更多的cpu性能,导致电脑整体性能下降、温度升高散热风扇疯狂等问题!而""编解码是使用gpu来运算,那么gpu设计之初就是为了运算而生,并且通常情况下gpu也是处于使用率极低的状态,当使用gpu来替代cpu运算后充分发挥了其自身的优势,非常nice,但问题是gpu兼容性不好,有的gpu不具备编解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信必诺

嗨,支持下哥们呗。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值