Third Maximum Number

本文介绍了一种高效算法,用于从整数数组中找出第三大的数。若不存在,则返回最大的数。通过三种变量记录前三大数,并使用循环进行更新。此外,还提供了一种使用优先队列简化实现的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a non-empty array of integers, return the third maximum number in this array. If it does not exist, return the maximum number. The time complexity must be in O(n).

Example 1:

Input: [3, 2, 1]

Output: 1

Explanation: The third maximum is 1.

Example 2:

Input: [1, 2]

Output: 2

Explanation: The third maximum does not exist, so the maximum (2) is returned instead.

Example 3:

Input: [2, 2, 3, 1]

Output: 1

Explanation: Note that the third maximum here means the third maximum distinct number.
Both numbers with value 2 are both considered as second maximum.

这题的思路是用三个变量保存前三大的数字。三个变量的初始值都是Long.Min_Value,因为测试用例会包括一个-2^31方的值,这个值已经超过interger的范围。

用一个循环更新记录。先跟最大值比较,如果大鱼它则依次更新;如果等于它,那么continue;以此类推。

按照题目要求如果没有第三大的值,直接返回最大值。

public int thirdMax(int[] nums) {
        if(nums == null || nums.length == 0) return 0;
        //要考虑不存在的情况

        long f = Long.MIN_VALUE;
        long s = Long.MIN_VALUE;
        long t = Long.MIN_VALUE;
        for(int i=0;i<nums.length;i++){
            if(nums[i]>f){
                t = s;
                s = f;
                f = nums[i];
            }else if(nums[i] == f){
                continue;
            }else if(nums[i]>s){
                t = s;
                s = nums[i];
            }else  if(nums[i] == s){
                continue;
            }
            else if(nums[i]>=t){
                t = nums[i];
            }else if(nums[i] == t){
                continue;
            }
        }
        if(t!= Long.MIN_VALUE){
            return (int)t;
        }else{
            return (int)f;
        }
    }

------------ 1.4.2017

更新

还有就是用priority queue来做,就没那么麻烦的

代码:

public int thirdMax(int[] nums) {
        Queue<Integer> queue = new PriorityQueue<>();
        Set<Integer> set = new HashSet<>();
        for(int num: nums){
            if(!set.contains(num)){
                set.add(num);
                queue.offer(num);
                if(queue.size()>3) queue.poll();
            }
        }
        if(queue.size()==2) queue.poll();
        return queue.peek();
    }


<think>We are given a string S containing '.' and '#'. We need to produce a string T of the same length, with the following conditions: 1. T must have the same length as S. 2. T must contain only '.', '#' or 'o'. 3. T[i] = '#' if and only if S[i] = '#' (so the positions of '#' in T are fixed to be the same as in S). 4. For any two indices i < j such that T[i] = T[j] = 'o', there must be at least one '#' in the substring T[i+1:j] (i.e., between them). Additionally, we want to maximize the number of 'o's. Observation: Condition 4 says that two 'o's cannot be adjacent (because then there is no character between them) and in fact, they must be separated by at least one '#' if there are no other 'o's in between? But note: the condition says "at least one # among T_{i+1},...,T_{j-1}". However, note that if we have three consecutive 'o's: ... o, o, o ... Then consider the first and the third: the condition requires that between the first and the third, there must be a '#'. But there is no '#' in between if the middle is 'o'. Therefore, we cannot have two consecutive 'o's? Actually, we can have consecutive 'o's? Let's check: Condition: if T_i = o and T_j = o (with j>i) then there must be a '#' between them. But if j = i+1, then the substring T[i+1:j] is empty? Actually, note the indices: from i+1 to j-1. If j = i+1, then j-1 = i, so the substring is from i+1 to i -> empty. Therefore, we cannot have two adjacent 'o's? However, note the condition is only for two o's. If we have three consecutive o's: positions: i, i+1, i+2. For (i, i+1): the substring from i+1 to i -> empty -> condition fails. Similarly, for (i, i+2): the substring from i+1 to i+1 is T[i+1] which is 'o', not '#' -> condition fails. Therefore, we cannot have two o's that are adjacent? Actually, we cannot have two o's without a '#' between them. This implies that between any two o's (even if they are separated by one or more non-# characters that are not o) there must be a '#'? But note: condition 4 says "if T_i and T_j are both o", then in the substring between them (from i+1 to j-1) there must be at least one '#'? However, what if we have: T = "o#o": between the first o (at i) and the last o (at j=i+2): the substring from i+1 to j-1 is the single character at i+1 which is '#' -> satisfies. But what about: T = "o.o": then between the two o's (at i and j=i+2) we have a '.' at i+1 -> no '#' -> condition fails. Therefore, we cannot have two o's separated by only '.' (or other o's, but we already saw consecutive o's are disallowed). So the condition forces that any two o's must be separated by at least one '#'? However, note the condition does not require consecutive separation? It says "there exists at least one # among T_{i+1},...,T_{j-1}". Therefore, if we have: T = "o#.o": between the first o (index0) and the last o (index3): we have indices1 and 2 -> '#' and '.' -> condition satisfied. But what if we have: T = "o.o#o": Consider the first o (index0) and the last o (index4): we have indices1,2,3: which are '.', 'o', '#' -> wait, but note condition 4: if we have two o's, then between them we require a '#'. However, note that the substring between index0 and index4 includes the o at index2? But the condition only requires that between the two o's (at 0 and 4) there is at least one '#'? And there is a '#' at index3 -> so it's satisfied. However, now consider the two o's at index0 and index2: between them: index1 -> which is '.' -> fails. Therefore, we cannot have two o's that are not separated by a '#'? How to interpret? The condition applies to every pair of o's. So for the example "o.o#o", the pair (0,2) fails because there is no '#' between them. Therefore, we cannot have two o's that are not separated by at least one '#'? This leads to an important constraint: the o's must be separated by at least one '#'? But note: what if we have three o's: o, then somewhere later a '#', then an o, then a '#', then an o? Then the condition for the first and the second: separated by a '#' -> ok. The condition for the first and the third: the substring between them must contain a '#'? It does (the first '#' and the second '#'? but note: the condition only requires at least one) -> ok. The condition for the second and the third: separated by a '#' -> ok. So the condition is satisfied. Therefore, the problem reduces to: We have fixed positions of '#' (from S). We can place o's in the positions that are not '#' (i.e., originally '.' in S) but with the constraint that between any two o's there must be at least one '#' (which must be one of the fixed '#' in S). However, note: the condition does not require that the two o's are separated by a '#' that is between them? It just requires that somewhere between them there is a '#' (which could be from the original S). How can we maximize the number of o's? Alternate view: The condition is equivalent to: the o's we place must lie in distinct contiguous segments separated by at least one '#'? Why? Consider the string is split by the '#'s into contiguous segments of non-'#' characters (which are originally '.'). For example: S = "#..#." -> segments: [0:0] (empty before first #), then [1:2] (the substring ".."), then [4:4] (the substring "."). Condition: we cannot put two o's in the same contiguous segment? Why? Because if we put two o's in the same segment (which is between two '#'s or at the ends and separated by no '#' in between) then there is no '#' between these two o's. Therefore, condition 4 fails. Therefore, we can put at most one 'o' per contiguous segment of non-'#'? But note: what if a segment is long? Example: segment "....." (5 dots). We can put only one 'o' in that segment? However, the sample input 3: "....." -> output "..o.." is acceptable? But note: the sample says outputting "o....", ".o...", "...o." or "....o" is also correct. Why can't we put two o's? If we put two o's in ".....": say at positions 0 and 2: Then T[0]='o', T[2]='o'. The substring between them is T[1] which is '.' -> no '#' -> fails. Therefore, indeed at most one 'o' per contiguous segment. But note: what about the possibility of putting an o in one segment and then after a '#' we have another segment and we put an o there? Then the condition is satisfied because the '#' is between them. Therefore, the maximum number of o's we can have is exactly the number of contiguous segments of non-'#' characters? However, consider the entire string might not be split? Example: if the string starts with non-'#', then we have a segment at the beginning. Similarly, if it ends with non-'#', then we have a segment at the end. How to count segments? We can split the string by '#' to get the contiguous non-'#' segments? But note: consecutive '#' will produce empty segments? Actually, we don't care about empty segments because we cannot put an o in an empty segment. Example: S = "#..#." -> split by '#' gives: ['', '..', '.'] -> we have two non-empty segments: '..' and '.' -> so we can put two o's? However, note the sample output is "#o.#o" -> which has two o's. But what about the first segment? It's empty -> we skip. Also, what about the segment at the beginning? S = "....#.." -> split: ['....', '..'] -> two segments -> maximum two o's. Example 3: S = "....." -> split: ['.....'] -> one segment -> maximum one o. However, the sample output for "....." is "..o..", which has one o. Example 4: S = '#' -> split: ['',''] -> no non-empty segment -> maximum 0 o's -> output '#' (which has no o). Therefore, the maximum number of o's we can have is the number of non-empty contiguous segments of non-'#' characters. But note: what if a segment is empty? We skip. However, there is a catch: the condition does not require that the o's are placed in every segment? We can choose to put an o in a segment or not? But we want to maximize the number. So we put one o per segment. How to assign the o in a segment? We can put the o in any position in the segment? The problem does not specify which position to choose. The condition only restricts the relative positions of two o's (must have a '#' between) and we are putting at most one per segment, so that condition is automatically satisfied. Also, note condition 3: T[i] must be '#' if and only if S[i] is '#' -> so in the non-'#' positions we can put either '.' or 'o'. Therefore, for each contiguous segment of non-'#' characters (which are originally '.'), we can choose one of the positions to be 'o' and the rest remain '.'? But note: we might have multiple choices. The problem says: output any string with maximum number of o's. Example: segment "...." -> we can choose any one index to be 'o' and the rest remain '.'. However, what if we choose two o's in the same segment? Then it would break the condition. So we must choose exactly one per segment (if we are to maximize) or none? But to maximize, we choose one per segment. Therefore, the algorithm: Step 1: Identify contiguous segments of non-'#' characters. Note: the entire string is split by the '#' and also note that the segments can be at the beginning, middle, or end. Step 2: For each contiguous non-empty segment, choose one index in that segment to put an 'o'. The rest of the non-'#' positions we leave as '.'. Step 3: The positions that are '#' in S remain '#' in T. Example: Input: "#..#." -> Segments: from index0 to index0: empty (because S[0]=='#') -> skip. from index1 to index2: ".." -> non-empty -> choose one: say index1 -> then T[1]='o', T[2]='.'. then we have '#' at index3 -> skip. then index4: '.' -> non-empty -> choose index4 -> T[4]='o'. Then T becomes: index0: '#' (from S) index1: 'o' index2: '.' (we leave as '.') index3: '#' (from S) index4: 'o' So T = "#o.#o" Alternatively, we could choose index2 in the first segment: then T[1]='.', T[2]='o', and T[4]='o' -> "#.o#o" -> which is also acceptable. Example: S = "....." -> one segment: "....." -> we choose one index to be 'o', say index2 -> then T = "..o.." Example: S = '#' -> no non-empty segment -> T = '#' Example: S = "...#..#.##.#." -> Split by '#' -> [0:3]: ... -> non-empty -> one segment? Actually, we must split by '#' and note the positions: Let me write the string: index: 0 1 2 3 4 5 6 7 8 9 10 11 12 S: . . . # . . # # . # . # . Actually, the string is: "...#..#.##.#." -> indices: 0: '.' 1: '.' 2: '.' 3: '#' 4: '.' 5: '.' 6: '#' 7: '#' 8: '.' 9: '#' 10: '.' 11: '#' 12: '.' Split by '#' gives: [0:2] -> "..." -> segment1 [4:5] -> ".." -> segment2 [8:8] -> "." -> segment3 [10:10] -> "." -> segment4 [12:12] -> "." -> segment5 But wait, note: the consecutive '#' (at indices 6 and 7) will split the string and leave an empty segment in between? Actually, no: The splits: We break at every '#'. The string: ...#..#.##.#. Split: segment1: ... (before first #) segment2: .. (between the first # at index3 and the next # at index6) segment3: (between index6 and index7) -> empty? segment4: (between index7 and index9) -> the character at index8: '.' -> so segment: "." segment5: (between index9 and index11) -> the character at index10: '.' -> segment: "." segment6: (after last # at index11) -> the character at index12: '.' -> segment: "." However, note that the consecutive '#' at indices 6 and 7: After the '#' at index3, we have the next character at index4: '.' -> so we have a segment from 4 to 5 (because next '#' is at index6). Then we have a '#' at index6, then immediately at index7 is another '#' -> so the segment between index6 and index7 is from index6+1 to index7-1 -> which is empty. Similarly, between index7 and index9 (the next '#') we have a segment from index8 to index8. Therefore, the non-empty segments are: [0,2]: "..." -> non-empty [4,5]: ".." -> non-empty [8,8]: "." -> non-empty [10,10]: "." -> non-empty [12,12]: "." -> non-empty So we have 5 non-empty segments? However, the sample output is: "o..#.o#o##o#o" -> which has 5 o's? Let me count: o at index0? -> but wait, the sample output: "o..#.o#o##o#o" -> index0: 'o' index1: '.' index2: '.' index3: '#' -> fixed index4: '.' index5: 'o' index6: '#' -> fixed index7: 'o' index8: '#' -> fixed (because S[8] is '#'? Actually, in the input S: S: "...#..#.##.#." -> index8: in S is '.'? but in the output T: at index8 we have '#'? -> wait, that would break condition 3. Correction: the input S: S = "...#..#.##.#." -> Let me write the positions: index0: '.' -> T[0] can be '.' or 'o' index1: '.' index2: '.' index3: '#' -> T[3] must be '#' index4: '.' index5: '.' index6: '#' -> T[6] must be '#' index7: '#' -> T[7] must be '#' index8: '.' -> T[8] can be '.' or 'o' index9: '#' -> T[9] must be '#' index10: '.' -> T[10] can be '.' or 'o' index11: '#' -> T[11] must be '#' index12: '.' -> T[12] can be '.' or 'o' The sample output: "o..#.o#o##o#o" -> Let me break down: index0: 'o' -> okay (from segment [0,2]) index1: '.' -> okay index2: '.' -> okay index3: '#' -> matches S[3]='#' index4: '.' -> okay index5: 'o' -> from segment [4,5]? -> but note: the segment [4,5] has two characters: index4 and index5. We choose one of them to be 'o'. We chose index5 -> then index4 becomes '.' -> okay. index6: '#' -> matches index7: 'o' -> but wait, S[7] is '#' -> so T[7] must be '#'! -> but the sample output has 'o' at index7? That's a problem. Actually, the sample output provided in the problem is: Sample Input 4: ...#..#.##.#. Sample Output 4: o..#.o#o##o#o But let me check index7: the 7th character (0-indexed) is the 8th character? The string: o . . # . o # o # # o # o Actually, let me count the indices: index0: 'o' index1: '.' index2: '.' index3: '#' -> correct index4: '.' index5: 'o' index6: '#' -> correct index7: 'o' -> but S[7] is '#' (from the input: "...#..#.##.#." -> at index7: the 8th character? Actually, the string has 13 characters? Input: ...#..#.##.#. -> 13 characters. The positions: 0: '.' -> but in the output: 'o' -> wait, no: the output starts with 'o' at index0? Actually, the sample output "o..#.o#o##o#o" has 13 characters? o (0), . (1), . (2), # (3), . (4), o (5), # (6), o (7), # (8), # (9), o (10), # (11), o (12) Now, in the input S: index0: '.' -> so T[0] can be 'o' -> okay. index1: '.' -> okay index2: '.' -> okay index3: '#' -> okay index4: '.' -> okay index5: '.' -> so T[5] can be 'o' -> okay. index6: '#' -> okay index7: '#' -> but T[7] is 'o' -> violates condition 3: T[i] must be '#' if and only if S[i] is '#' -> here S[7] is '#' so T[7] must be '#' -> but we have 'o'. Therefore, the sample output provided in the problem statement for sample 4 is incorrect? Let me check the problem statement: Sample Input 4: ...#..#.##.#. Sample Output 4: o..#.o#o##o#o How many characters? Input: ...#..#.##.#. -> 13 characters: ...# (4), then ..# (3), then .## (3), then .#. (3) -> total 4+3+3+3? Actually, count: ... -> 3, then # -> 1, then .. -> 2, then # -> 1, then . -> 1, then # -> 1, then # -> 1, then . -> 1, then # -> 1, then . -> 1 -> total: 3+1+2+1+1+1+1+1+1+1 = 13? The output: "o..#.o#o##o#o" -> o -> 1, then o.. -> 3, then # -> 1, then . -> 1, then o -> 1, then # -> 1, then o -> 1, then # -> 1, then # -> 1, then o -> 1, then # -> 1, then o -> 1 -> total 1+3+1+1+1+1+1+1+1+1+1+1+1 = 14? Actually, the output string: "o..#.o#o##o#o" -> o, ., ., #, ., o, #, o, #, #, o, #, o -> 13 characters. Now, the positions: index0: 'o' -> S[0] is '.' -> okay (because we can put o in non-#) index1: '.' -> S[1] is '.' -> okay index2: '.' -> S[2] is '.' -> okay index3: '#' -> S[3] is '#' -> okay index4: '.' -> S[4] is '.' -> okay index5: 'o' -> S[5] is '.' -> okay index6: '#' -> S[6] is '#' -> okay index7: 'o' -> S[7] is '#' -> but wait, S[7] is the 8th character? The input S: index0: '.' index1: '.' index2: '.' index3: '#' index4: '.' index5: '.' index6: '#' index7: '#' -> so at index7, S[7] is '#' -> but T[7] is 'o' -> violates condition 3. Therefore, the sample output provided is incorrect. Let me check the problem statement again: Sample Input 4: ...#..#.##.#. Sample Output 4: o..#.o#o##o#o But wait, the problem says: "Output one string with the maximum number of os among all strings T that satisfy all conditions." And the constraints: T_i = '#' if and only if S_i = '#' -> so at every index i where S[i]=='#', T must be '#' and at every index i where S[i]=='.', T can be either '.' or 'o'. Therefore, the sample output has an 'o' at index7, but S[7]=='#', which is not allowed. So the sample output is invalid. However, the problem says: "Outputting #.o#o is also correct." for sample1. So they are not making this kind of error in sample1. I suspect the sample output for sample4 is a typo. The intended output might be: "o..#.o#.#o#o" -> but wait, that would be 12 characters. Alternatively, maybe the sample input4 is different? Let me read the problem again: Sample Input 4: ...#..#.##.#. How about we break the input: ...# (4) -> then ..# (3) -> then . (1) then # (1) then # (1) then . (1) then # (1) then . (1) -> total 4+3+1+1+1+1+1 = 13? But the input says: "...#..#.##.#." -> ... -> 3, then # -> 1, then .. -> 2, then # -> 1, then . -> 1, then # -> 1, then # -> 1, then . -> 1, then # -> 1, then . -> 1 -> total 3+1+2+1+1+1+1+1+1+1 = 13. The intended output: We have 5 segments: segment1: indices0,1,2 -> we put an 'o' at one of them -> say index0 -> so T[0]='o' segment2: indices4,5 -> we put an 'o' at one of them -> say index5 -> T[5]='o' segment3: index8 -> we put an 'o' at index8 -> T[8]='o' segment4: index10 -> T[10]='o' segment5: index12 -> T[12]='o' Then the rest of the non-'#' positions we leave as '.'? And the '#' positions: index3: '#' index6: '#' index7: '#' -> but wait, in the input, index7 is '#'? yes -> so T[7] must be '#' index9: '#' index11: '#' Therefore, T: index0: 'o' index1: '.' index2: '.' index3: '#' index4: '.' index5: 'o' index6: '#' index7: '#' -> must be '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' So the string: "o.." -> then '#' -> then ".o" -> then "##" -> then "o" -> then '#' -> then "o" -> then '#' -> then "o" -> "o..#.o##o#o#o" But wait, that's: o, ., ., #, ., o, #, #, o, #, o, #, o -> 13 characters. However, the problem sample output is: "o..#.o#o##o#o" -> which has an 'o' at index7 (which is the 8th character) and that is a '#' in S -> invalid. Alternatively, we can write: T = "o.." -> first three: o, ., . then '#' at index3 then at index4: '.' and index5: 'o' -> so ".o" -> then at index6: '#' -> then at index7: must be '#' -> then at index8: 'o' -> then index9: '#' -> then index10: 'o' -> then index11: '#' -> then index12: 'o' So: "o..#.o" -> then '#' -> then '#' -> then "o#o#o" -> "o..#.o##o#o#o" But that is: index0: 'o' index1: '.' index2: '.' index3: '#' index4: '.' index5: 'o' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' This is valid. How many o's? 5. But the sample output is: "o..#.o#o##o#o" -> which is 13 characters and has: index0: 'o' index1: '.' index2: '.' index3: '#' index4: '.' index5: 'o' index6: '#' index7: 'o' -> here is the problem: because S[7] is '#' -> we cannot put 'o' here. Therefore, the sample output provided in the problem is incorrect. How to fix? We'll output a valid string: For the input "...#..#.##.#.": We have 5 segments: [0,2], [4,5], [8,8], [10,10], [12,12] -> so we choose one index in each segment to put an 'o'. We can choose arbitrarily. For example, we can choose the first occurrence in each segment? segment1: [0,2] -> choose index0 -> 'o' segment2: [4,5] -> choose index4 -> then T[4]='o', T[5]='.' -> then we have: index0: 'o' index1: '.' index2: '.' index3: '#' index4: 'o' index5: '.' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' Then T = "o...#o..##o#o#o" -> but wait, let me write by index: index0: 'o' index1: '.' index2: '.' index3: '#' index4: 'o' index5: '.' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' So the string: "o.." -> then '#' -> then "o." -> then "##" -> then "o" -> then '#' -> then "o" -> then '#' -> then "o" -> -> "o..#o.##o#o#o" But that is 13 characters? "o..#o.##o#o#o" -> o, ., ., #, o, ., #, #, o, #, o, #, o -> 13. Alternatively, we can choose the last occurrence in each segment? segment1: [0,2] -> choose index2 -> then T[0]='.', T[1]='.', T[2]='o' segment2: [4,5] -> choose index5 -> then T[4]='.', T[5]='o' segment3: [8,8] -> choose index8 -> 'o' segment4: [10,10] -> choose index10 -> 'o' segment5: [12,12] -> choose index12 -> 'o' Then T: index0: '.' index1: '.' index2: 'o' index3: '#' index4: '.' index5: 'o' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' -> "..o#.o##o#o#o" Or we can choose arbitrarily: the problem says any string is acceptable. Implementation: Steps: Let S be the input string. We know: T = list of characters? We'll build an array for T. We'll set: For every index i: if S[i]=='#', then T[i] = '#' else, T[i] = '.' (and then we will change one per segment to 'o') Now, we need to split the indices of non-'#' into contiguous segments. How to get contiguous segments? We can traverse and note the positions where S[i]=='.' (or not '#') and then group consecutive indices. Algorithm for grouping: segments = [] current_segment = [] for i in range(len(S)): if S[i]=='#': # if we are in a segment, then we end the current segment and reset if current_segment: segments.append(current_segment) current_segment = [] else: # S[i]=='.' current_segment.append(i) if current_segment: segments.append(current_segment) But note: what if the string ends with non-'#'? then we need to append the last segment. Then, for each segment in segments: if the segment is non-empty, then we choose one index from the segment to set T[index] = 'o' Then combine to form the string. Example: S = "#..#." -> i=0: S[0]=='#' -> we end any current segment? current_segment is [] -> so we don't do anything, then reset current_segment to []? Then we set current_segment = []? i=1: S[1]=='.' -> current_segment = [1] i=2: S[2]=='.' -> current_segment = [1,2] i=3: S[3]=='#' -> we end the segment: append [1,2] to segments, then reset current_segment to []. i=4: S[4]=='.' -> current_segment = [4] Then after loop: append [4] to segments. Then segments = [[1,2],[4]] Then we choose one index per segment: segment1: [1,2] -> we choose 1 -> then T[1]='o', T[2] remains '.'? But note: we initially set T for non-'#' to '.' -> so then we set T[1]='o' Then T[0]='#', T[1]='o', T[2]='.', T[3]='#', T[4]='.' -> but wait, we haven't set the last segment? For segment2: [4] -> set T[4]='o' Then T = ['#','o','.','#','o'] -> "#o.#o" Alternatively, if we choose 2 for the first segment: T[2]='o', then T[1] remains '.' -> then T = "#.o#o" Example: S = "....." -> segments: i0: '.' -> current_segment=[0] i1: '.' -> [0,1] i2: '.' -> [0,1,2] i3: '.' -> [0,1,2,3] i4: '.' -> [0,1,2,3,4] Then segments = [[0,1,2,3,4]] Then we choose one index, say 2: then T[2]='o', others '.' -> T = "..o.." Example: S = '#' -> segments: i0: '#' -> then we don't add anything, and at the end current_segment is [] -> so segments is empty. Then T = ['#'] Example: S = "" -> empty string? but constraint: length>=1. Now, let's test the sample input4: S = "...#..#.##.#." -> We break down: i0: '.' -> current_segment = [0] i1: '.' -> [0,1] i2: '.' -> [0,1,2] i3: '#' -> push current_segment -> [[0,1,2]], then reset to [] i4: '.' -> [4] i5: '.' -> [4,5] i6: '#' -> push [4,5] -> segments = [[0,1,2],[4,5]], reset to [] i7: '#' -> nothing, reset to []? i8: '.' -> [8] i9: '#' -> push [8] -> segments = [[0,1,2],[4,5],[8]], reset to [] i10: '.' -> [10] i11: '#' -> push [10] -> segments = [[0,1,2],[4,5],[8],[10]], reset to [] i12: '.' -> [12] then after loop: push [12] -> segments = [[0,1,2],[4,5],[8],[10],[12]] Then we choose one index per segment: segment0: [0,1,2] -> choose 0 -> T[0]='o' segment1: [4,5] -> choose 4 -> T[4]='o' segment2: [8] -> T[8]='o' segment3: [10] -> T[10]='o' segment4: [12] -> T[12]='o' Then T: index0: 'o' index1: '.' index2: '.' index3: '#' index4: 'o' index5: '.' (because we set non-chosen ones to '.', and S[5] is '.' so we leave as '.'; but note: we set T[4]='o' and T[5] remains '.' because we didn't set it to 'o') index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' So the string: "o.." -> then '#' -> then "o." -> then "##" -> then "o" -> then '#' -> then "o" -> then '#' -> then "o" -> "o..#o.##o#o#o" But note: the problem sample output was "o..#.o#o##o#o", which we now know is invalid. However, our output has 5 o's and satisfies the conditions. But let me check condition4: The o's are at indices: 0,4,8,10,12. Check pairs: 0 and 4: between them: indices1,2,3 -> which are '.', '.', '#' -> contains '#' -> ok. 0 and 8: between them: indices1..7 -> contains '#' at index3,6,7 -> ok. 0 and 10: ... -> contains '#' -> ok. 0 and 12: ... -> ok. 4 and 8: between indices5,6,7 -> contains '#' at 6,7 -> ok. 4 and 10: between indices5..9 -> contains '#' at 6,7,9 -> ok. 4 and 12: ... -> ok. 8 and 10: between index9: which is '#' -> ok. 8 and 12: between index9,10,11: contains '#' at 9 and 11 -> ok. 10 and 12: between index11: '#' -> ok. Therefore, valid. Therefore, code: Steps: Read S. Initialize T as a list: T = ['.'] * len(S) for every position, but then we will set: For every index i where S[i]=='#', we set T[i]='#' Then, we form segments of consecutive non-'#' indices? Actually, we are going to form segments of indices i such that S[i]!='#', but note condition: we are only allowed to set an o in a non-'#' position. Then, for each segment (which is a list of consecutive indices in increasing order), we choose one index from that segment and set T[index]='o'. We can choose the first, last, or any. Then output T as a string. Let's test with sample1: S = "#..#." -> T initially: ['.','.','.','.','.'] Then set the '#' positions: index0: S[0]=='#', so T[0]='#' index3: S[3]=='#', so T[3]='#' Then T = ['#','.', '.', '#', '.'] Then segments: We traverse: i0: S[0]=='#' -> skip and reset current_segment? i1: '.' -> current_segment=[1] i2: '.' -> current_segment=[1,2] i3: '#' -> push [1,2] to segments, reset to [] i4: '.' -> push [4] to segments? after the loop we push the last segment. Then segments = [[1,2],[4]] Then we choose one per segment: segment [1,2]: we choose 1 -> then T[1]='o' segment [4]: choose 4 -> T[4]='o' Then T = ['#','o','.','#','o'] -> "#o.#o" Alternatively, if we choose 2 in the first segment: T[2]='o', then T = ['#','.', 'o', '#', 'o'] -> "#.o#o" Both are valid. We'll code accordingly. Code: s = input().strip() n = len(s) # Initialize T as a list of characters: for non '#' we set initially '.', for '#' we set to '#' T = ['.'] * n for i in range(n): if s[i] == '#': T[i] = '#' # Now, form segments of consecutive non-'#' indices? Actually, we want contiguous non-'#' indices? segments = [] current_segment = [] for i in range(n): if s[i] == '#': if current_segment: segments.append(current_segment) current_segment = [] else: current_segment.append(i) if current_segment: segments.append(current_segment) # Now, for each segment, choose one index to set to 'o' # We can choose the first index in each segment? for seg in segments: # We choose the first element? # But what if the segment is empty? but we only appended non-empty segments. # Let's choose the first element in the segment: seg[0] # Alternatively, we can choose any. Let me choose the last? or the first? # The problem does not specify. Let me choose the first element in the segment. idx = seg[0] # or we could choose seg[-1] for the last, or any other. T[idx] = 'o' # But wait, the problem sample input3: "....." -> # We have one segment: [0,1,2,3,4] -> if we choose the first element, then T[0]='o' -> "o...." # But the sample output is "..o..", which is the middle? # The problem says any is acceptable. # However, the problem sample output for sample1: # Sample Output 1: "#o.#o" -> which uses the first element in the first segment? # For the first segment [1,2]: they chose the first element (index1) -> so T[1]='o' # But also they say "#.o#o" is acceptable -> which uses the last element in the segment? # So we can choose arbitrarily. # However, note: if we choose the first element in the segment, then the o is as left as possible? # But condition4: if we have two o's, they must be separated by a '#' -> which they will be because they are in different segments? # So it doesn't matter which one we choose. # Output the T as string. print(''.join(T)) But wait: what if we choose the same segment? we are only choosing one per segment. However, what if we choose the last element? For the segment [0,1,2,3,4] in ".....": if we choose the last element, then T[4]='o' -> "....o" -> which is acceptable. So we can choose any. We'll choose the first element for each segment. However, the problem sample input4: we chose the first element: segment0: [0,1,2] -> choose 0 -> T[0]='o' segment1: [4,5] -> choose 4 -> T[4]='o' segment2: [8] -> choose 8 -> T[8]='o' segment3: [10] -> choose 10 -> T[10]='o' segment4: [12] -> choose 12 -> T[12]='o' Then T = "o.." -> then '#' -> then "o." -> then "##" -> then "o" -> then '#' -> then "o" -> then '#' -> then "o" -> "o..#o.##o#o#o" But the problem sample output was "o..#.o#o##o#o", which is invalid. However, we are outputting a valid one. Let me check with the sample input2: S = '#' -> T = ['#'] -> then segments: [] -> so we output '#' -> correct. Therefore, the code is: s = input().strip() n = len(s) T = ['.'] * n for i in range(n): if s[i] == '#': T[i] = '#' segments = [] current = [] for i in range(n): if s[i]=='#': if current: segments.append(current) current = [] else: current.append(i) if current: segments.append(current) for seg in segments: # choose the first element of the segment? # But note: we might have an empty segment? but we skip empty in the if condition above? # Actually, we only add non-empty segments. # Let me choose the first element: seg[0] T[seg[0]] = 'o' print(''.join(T)) However, what if we choose the last? Then for each segment: T[seg[-1]]='o' Both are acceptable. But note: the problem sample input3: "....." -> If we choose the last element: then T[4]='o' -> "....o" -> which is acceptable. However, the sample output is "..o..", which is the middle. But the problem says: "Outputting o...., .o..., ...o., or ....o is also correct." -> so ....o is acceptable. Therefore, we can choose any. But note: the problem says "maximum number of os", and we are putting one per segment -> maximum. However, what if we choose the same segment twice? we are not. So we are done. But wait: what if we choose a different element per segment? the problem does not require a specific one. We'll stick to the first element. However, let me run the sample input4 with the last element: segments: seg0: [0,1,2] -> choose 2 -> T[2]='o' seg1: [4,5] -> choose 5 -> T[5]='o' seg2: [8] -> choose 8 -> T[8]='o' seg3: [10] -> choose 10 -> T[10]='o' seg4: [12] -> choose 12 -> T[12]='o' Then T: index0: '.' index1: '.' index2: 'o' index3: '#' index4: '.' index5: 'o' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' -> "..o#.o##o#o#o" This is also valid. We can even choose arbitrarily: for example, the middle element? For a segment of length L, we choose the element at floor(L/2) index. But the problem does not require that. We'll choose the first element for simplicity. Let me run the provided examples: Sample Input 1: "#..#." -> T = ['#','o','.','#','o'] -> "#o.#o" Sample Input 2: "#" -> "#" Sample Input 3: "....." -> T: Initially: ['.','.', '.', '.', '.'] Then set the non-'#' positions: all are non-'#', so we form one segment [0,1,2,3,4] -> choose the first element: index0 -> then T[0]='o' -> "o...." But the sample output is "..o..", which is different. However, the problem says: "Outputting o...., .o..., ...o., or ....o is also correct." -> so "o...." is acceptable. Therefore, we output "o...." for ".....". But the problem sample output is "..o..", which is the middle. We can change to choose the middle? For a segment of length L, we choose the element at L//2. Then for ".....": segment: [0,1,2,3,4] -> length=5, middle index = 2 -> T[2]='o' -> "..o.." How about the first sample: segment1: [1,2] -> length=2, middle = 1 -> so index1 -> T[1]='o' -> then T = ['#','o','.','#','o'] -> "#o.#o" -> same as before. How about the second segment: [4,5] in sample4: length=2 -> middle=0? -> then we choose the element at index0 of the segment? The segment is [4,5] -> the element at index0 in the segment is 4 -> so we choose 4. So if we choose the middle element of the segment (by index in the segment: we choose the element at the middle index of the segment list) then: For a segment of indices: we choose the element at position floor((len(seg)-1)/2) or len(seg)//2? For length=1: [0] -> index0 -> 0//? For length=2: [0,1] -> we want to choose the first? or the second? If we use: index = len(seg)//2 -> 2//2=1 -> then seg[1]=1 -> which is the second element. But the problem sample output for sample1: "#o.#o" uses the first element? However, the problem also accepts "#.o#o", which uses the second. So both are acceptable. But if we want to mimic the sample output for ".....": we want the middle -> for length=5: index=5//2=2 -> seg[2]=2. So we can do: for seg in segments: mid = len(seg) // 2 # for 5: 5//2=2; for 2: 2//2=1 -> the second element? T[seg[mid]] = 'o' Then for sample1: segment [1,2]: len=2, mid=1 -> seg[1]=2 -> then T[2]='o' -> then T = ['#','.', 'o', '#', 'o'] -> "#.o#o" But the problem sample output is "#o.#o", which is the first element. How about we do: mid = (len(seg)-1)//2 ? for length=5: (5-1)//2=4//2=2 -> same as above. for length=2: (2-1)//2=1//2=0 -> then we choose the first element? Then for sample1: segment [1,2]: mid=0 -> T[1]='o' -> "#o.#o" So we can do: index_in_segment = (len(seg)-1)//2 # integer division Then for sample1: segment [1,2]: len=2 -> (1)//2=0 -> so we choose seg[0]=1 -> T[1]='o' -> "#o.#o" For sample3: segment [0,1,2,3,4]: len=5 -> (5-1)//2=4//2=2 -> seg[2]=2 -> T[2]='o' -> "..o.." For sample4: segment0: [0,1,2]: len=3 -> (3-1)//2=2//2=1 -> seg[1]=1 -> T[1]='o' segment1: [4,5]: len=2 -> (2-1)//2=1//2=0 -> seg[0]=4 -> T[4]='o' segment2: [8]: len=1 -> (1-1)//2=0//2=0 -> seg[0]=8 -> T[8]='o' segment3: [10]: T[10]='o' segment4: [12]: T[12]='o' Then T: index0: '.' index1: 'o' index2: '.' index3: '#' index4: 'o' index5: '.' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' -> ".o.#o.##o#o#o" This is valid. But the problem sample output was "o..#.o#o##o#o", which is invalid. However, we are outputting a valid one. The problem says: "If there are multiple such strings, printing any of them will be considered correct." Therefore, we can choose any. We'll choose the method: for a segment, we set T[seg[(len(seg)-1)//2]] = 'o' Why? because then for a segment of length L, we choose the element at index (L-1)//2, which is the middle for odd and the first for even? Actually, for even: L=2: (2-1)//2 = 1//2=0 -> the first element? But wait, (2-1)//2 in integer division is 0? Actually: (2-1)=1, 1//2=0 -> so we choose the first element? For L=4: (4-1)//2=3//2=1 -> the second element? But the problem sample output for "....." (which is length=5) is the middle, which is index2. With our method: (5-1)//2=4//2=2 -> so we choose index2 -> "..o..", which matches the sample output. For the segment of length 3: [0,1,2] -> we choose (3-1)//2=2//2=1 -> the middle element? Therefore, we are choosing the middle element for odd-length segments and the first element for even-length segments? Actually, for even-length segments, we are choosing the element at index (L-1)//2, which is the first element? Example: [0,1,2,3]: L=4 -> (4-1)//2=3//2=1 -> so the second element? Then the output: indices: [0,1,2,3] -> we choose index1 -> then the string: if this is the entire string: T = ['.','o','.','.'] -> ".o.." But the problem sample output for "...." (if we have 4 dots) would be: We can output any: "o...", ".o..", "..o.", or "...o" -> so ".o.." is acceptable. Therefore, we'll do: s = input().strip() n = len(s) T = ['.'] * n for i in range(n): if s[i]=='#': T[i] = '#' segments = [] current = [] for i in range(n): if s[i]=='#': if current: segments.append(current) current = [] else: current.append(i) if current: segments.append(current) for seg in segments: # index_in_segment = (len(seg)-1)//2 -> this gives the middle for odd and the first half of the even? mid_index = (len(seg)-1)//2 T[seg[mid_index]] = 'o' print(''.join(T)) This will produce for sample1: S = "#..#." -> segments: [[1,2], [4]] For [1,2]: mid_index = (2-1)//2 = 1//2=0 -> so we choose seg[0]=1 -> T[1]='o' For [4]: mid_index=(1-1)//2=0//2=0 -> T[4]='o' -> "#o.#o" For sample3: "....." -> segment: [0,1,2,3,4] -> mid_index=(5-1)//2=4//2=2 -> T[2]='o' -> "..o.." For sample4: segments: [[0,1,2],[4,5],[8],[10],[12]] seg0: [0,1,2] -> mid_index=(3-1)//2=1 -> T[1]='o' seg1: [4,5] -> mid_index=(2-1)//2=0 -> T[4]='o' seg2: [8] -> T[8]='o' seg3: [10] -> T[10]='o' seg4: [12] -> T[12]='o' Then T: index0: '.' index1: 'o' index2: '.' index3: '#' index4: 'o' index5: '.' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' -> ".o.#o.##o#o#o" This is valid. Therefore, we'll use this method to choose the element in the segment. However, note: the problem does not require a specific one. We are free to choose any. But the problem sample outputs: Sample1: "#o.#o" -> which uses the first element for the first segment? But our method for the first segment (which has length2) chooses the first element? Actually, we choose the element at index0 in the segment list -> which is the first element -> so same. So we output the code accordingly. Let me run sample2: S = '#' -> segments is empty -> so we output '#' -> correct. Code: s = input().strip() n = len(s) res = ['.'] * n # set the '#' positions for i in range(n): if s[i]=='#': res[i] = '#' # build segments: list of list of indices (non-# consecutive) segs = [] cur = [] for i, ch in enumerate(s): if ch == '#': if cur: segs.append(cur) cur = [] else: cur.append(i) if cur: segs.append(cur) for seg in segs: # choose the middle element: for a segment of length L, we choose index = (L-1)//2 in the segment list. mid = (len(seg)-1)//2 res[seg[mid]] = 'o' print(''.join(res)) We'll run the provided examples. But note: the problem sample input4: our output is ".o.#o.##o#o#o", which is valid. However, the problem sample output was different and invalid, so we are not matching that. But the problem says any valid maximum is acceptable. Therefore, we output the code. Let me test with the sample input: Input: "#..#." -> Output: "#o.#o" Input: "#" -> Output: "#" Input: "....." -> Output: "..o.." Input: "...#..#.##.#." -> Output: ".o.#o.##o#o#o" We'll submit. However, note: the problem sample input4: Input: "...#..#.##.#." Our output: ".o.#o.##o#o#o" But the problem says: Sample Input 4: ...#..#.##.#. Sample Output 4: o..#.o#o##o#o [which is invalid] We are not matching that, but we have a valid one. Therefore, we are done. Let me run the sample4 in the problem: Input: "...#..#.##.#." -> Our output: index0: '.' -> but in the sample output they have 'o' at index0? Why? The problem sample output: "o..#.o#o##o#o" -> This has an 'o' at index0 and an 'o' at index5 and an 'o' at index7 (which is invalid) and so on. Our output: index0: '.' index1: 'o' index2: '.' index3: '#' index4: 'o' index5: '.' index6: '#' index7: '#' index8: 'o' index9: '#' index10: 'o' index11: '#' index12: 'o' So we have 5 o's: at indices1,4,8,10,12. The problem sample output has 6 o's? "o..#.o#o##o#o" -> o at0, then at5, then at7, then at10, then at12? But wait, the string: index0: 'o' index1: '.' index2: '.' index3: '#' index4: '.' index5: 'o' index6: '#' index7: 'o' -> invalid because S[7] is '#' -> so we cannot have an 'o' there. Therefore, the problem sample output is invalid. We have a valid one. Code: s = input().strip() n = len(s) res = ['.'] * n for i in range(n): if s[i] == '#': res[i] = '#' segs = [] cur = [] for i, char in enumerate(s): if char == '#': if cur: segs.append(cur) cur = [] else: cur.append(i) if cur: segs.append(cur) for seg in segs: mid = (len(seg)-1)//2 res[seg[mid]] = 'o' print(''.join(res))</think>To solve this problem, we need to generate a string \( T \) from the given string \( S \) such that \( T \) meets specific conditions and maximizes the number of 'o's. The conditions are: 1. The length of \( T \) must be the same as \( S \). 2. \( T \) can only contain characters '.', '#', or 'o'. 3. \( T_i = \# \) if and only if \( S_i = \# \). 4. For any two indices \( i \) and \( j \) (where \( i < j \)) such that \( T_i = T_j = \text{'o'} \), there must be at least one '#' between them in the substring \( T_{i+1} \ldots T_{j-1} \). ### Approach 1. **Initialization**: Start by initializing the result list \( T \) with '.' for all positions. Then, for each position in \( S \) where the character is '#', set the corresponding position in \( T \) to '#'. 2. **Segment Identification**: Traverse the string \( S \) to identify contiguous segments of non-'#' characters. These segments are sequences of '.' characters separated by '#' characters. 3. **Placing 'o's**: For each identified segment, place exactly one 'o' in the middle of the segment (or at any valid position within the segment) to maximize the number of 'o's while ensuring that no two 'o's are in the same segment (which would violate condition 4). The middle position is chosen as \( \text{mid} = (\text{segment length} - 1) // 2 \). ### Solution Code ```python def main(): s = input().strip() n = len(s) res = ['.'] * n for i in range(n): if s[i] == '#': res[i] = '#' segments = [] current_segment = [] for i, char in enumerate(s): if char == '#': if current_segment: segments.append(current_segment) current_segment = [] else: current_segment.append(i) if current_segment: segments.append(current_segment) for seg in segments: mid_index = (len(seg) - 1) // 2 res[seg[mid_index]] = 'o' print(''.join(res)) if __name__ == "__main__": main() ``` ### Explanation 1. **Initialization**: The result list \( res \) is initialized with '.' for all positions. Positions in \( res \) corresponding to '#' in \( S \) are updated to '#'. 2. **Segment Identification**: The string \( S \) is traversed to identify contiguous segments of non-'#' characters. Each segment is a list of indices where \( S \) has '.' characters, separated by '#' characters. 3. **Placing 'o's**: For each segment, the middle index is calculated as \( \text{mid\_index} = (\text{length of segment} - 1) // 2 \). The character at this index in \( res \) is set to 'o'. This ensures that each segment contributes exactly one 'o', maximizing the count while adhering to the condition that no two 'o's in the same segment are without a '#' between them (since they are in different segments separated by '#'). 4. **Output**: The modified list \( res \) is joined into a string and printed. This approach efficiently maximizes the number of 'o's while ensuring all constraints are satisfied by leveraging segment identification and strategic placement of 'o's in the middle of each segment. ### Related Questions 1. How does the solution ensure that no two 'o's violate condition 4? 2. What is the time complexity of the solution? 3. How would the solution handle strings with no '#' characters? 4. Can the solution be optimized further for space or time?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值