分数取模

下面是“分数”模运算的定义:
b, m互质
k = a/b (mod m) <=> kb = a (mod m)

这里求 x = 1/17 (mod 2668)
<=>
17x = 1 (mod 2668)
<=>
17x = 2668k + 1 (k∈整数)

取合适的k使得17|(2668k+1)
这里刚好17 | (2668 + 1)
所以k = 1, x = (2668+1)/17 = 157 

当然,当k = 1 + 17n 时,
x = (2668 + 17·n·2668 + 1)/17 = 157 + 2668n
也符合条件(n任意整数)

但如果限定 2668 > x > 0,x是唯一的。

 

转载于:https://www.cnblogs.com/Leozi/p/10835168.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值