从RetrievalQA到LCEL的迁移:增强自然语言问答系统

老铁们,今天咱们聊聊关于迁移从RetrievalQALCEL这个新技术栈的实战经验。随着AI的快速发展,我们的工具也需要不断革新和优化,那么说白了,就是为了让我们在应用中能有更好的表现和更高的灵活性。

技术背景介绍

RetrievalQA链是在一个数据源上使用增强型生成的自然语言问答系统。这个老方法已经在许多项目中得到应用,但为了实现更高的定制化和更高效的操作,我们考虑迁移到LCEL实现。

迁移到LCEL的几个优势包括:

  • 更易于定制化:通过特定的参数,我们可以在细节上进行更深度的定制。
  • 返回源文件更简单:能更方便地获取问题答案所用的数据源。
  • 支持可运行的方法:包含流式传输和异步操作,这波操作可以说是相当丝滑。

原理深度解析

在使用LCEL时,我们需要理解内部的工作机制,比如如何检索、格式化文档并通过提示发给LLM(大语言模型)。虽然LCEL实现更为详尽,但它提供了一个灵活的架构。我们可以利用这个灵活性构建自己的辅助函数或采用更高级别的工具方法,如create_retrieval_chaincreate_stuff_documents_chain

实战代码演示

下面的代码展示了如何在两个方法中实现相同的问答功能。

使用RetrievalQA</
### LangChain LCEL 实现多链顺序调用 LangChain 提供了一种灵活的方式来组合多个链条(Chains),并通过其表达语言(LCEL)实现复杂的逻辑操作。以下是关于如何通过 LangChain 的 `SimpleSequentialChain` 和其他组件来实现多链顺序调用的具体方法。 #### 使用 SimpleSequentialChain 组合两条 Chain 可以通过 `SimpleSequentialChain` 将多个链条按顺序连接起来,从而形成一个多阶段的工作流程。以下是一个具体的代码示例: ```python from langchain.chains import SimpleSequentialChain, LLMChain from langchain.prompts import PromptTemplate from langchain.llms import OpenAI # 定义第一个 Chain (Synopsis Chain) synopsis_template = """You are a helpful assistant that generates movie synopses. Title: {title} Genre: {genre} Write a brief synopsis for this movie:""" synopsis_prompt = PromptTemplate(input_variables=["title", "genre"], template=synopsis_template) llm = OpenAI(temperature=0.7) synopsis_chain = LLMChain(llm=llm, prompt=synopsis_prompt) # 定义第二个 Chain (Review Chain) review_template = """You are a helpful assistant that writes reviews about movies. Movie Synopsis: {movie_synopsis} Write a short review of this movie.""" review_prompt = PromptTemplate(input_variables=["movie_synopsis"], template=review_template) review_chain = LLMChain(llm=llm, prompt=review_prompt) # 创建 Sequential Chain 来串联这两个 Chains overall_chain = SimpleSequentialChain(chains=[synopsis_chain, review_chain], verbose=True) # 执行整体 Chain result = overall_chain.run({"title": "The Matrix", "genre": "Science Fiction"}) print(result) ``` 上述代码展示了如何使用 `SimpleSequentialChain` 将两个链条按顺序执行[^1]。首先生成电影简介 (`synopsis_chain`),然后基于该简介撰写评论 (`review_chain`)。 --- #### 利用 Runnable 协议扩展功能 除了 `SimpleSequentialChain`,还可以利用 LangChain 中的 `Runnable` 协议来自定义更复杂的行为。例如,如果需要支持批量处理或流式传输数据,则可以借助 `Runnable` 接口中的 `stream` 或 `batch` 方法[^3]。下面展示一个简单的例子: ```python from langchain.schema.runnable import RunnableLambda # 自定义函数作为 Chain 的一部分 def process_input(text): return f"Processed Input: {text}" custom_chain = RunnableLambda(process_input) # 结合之前的 Chains 构建新的 Sequence complex_chain = synopsis_chain | custom_chain | review_chain # 调用 Complex Chain 并查看结果 output = complex_chain.invoke({"title": "Inception", "genre": "Thriller"}) print(output) ``` 在这个例子中,我们引入了 `RunnableLambda` 来封装自定义函数,并将其与其他链条结合起来,形成了一个新的工作流。 --- #### 声明式的 LangChain 表达语言(LCEL) 对于更加高级的需求,可以直接采用 LangChain 表达语言(LCEL)。它允许开发者以声明的方式描述整个流水线结构,而无需显式编写 Python 代码。这种模式非常适合大规模部署以及动态调整配置场景下的应用开发[^2]。 虽然官方文档尚未提供完整的 LCEL 示例脚本,但可以根据现有 API 文档推测其实现形式如下所示: ```yaml pipeline: steps: - name: generate_synopsis type: llm_chain config: prompt: | You are an AI writer who creates engaging summaries... input_vars: title: string genre: string - name: write_review type: llm_chain depends_on: [generate_synopsis] config: prompt: | Based on the provided summary, craft a compelling critique... input_vars: movie_synopsis: string ``` 此 YAML 文件定义了一个两步管道:第一步生成摘要;第二步依据前一步的结果撰写影评。实际运行时会由框架解析这些指令并完成相应任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值