Counting Bits

本文介绍了一种使用动态规划方法计算从0到给定数值范围内所有整数的二进制表示中1的数量的方法,并提供了两种不同的实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 问题描述
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.

Example:
For num = 5 you should return [0,1,1,2,1,2].
2 思路
用动态规划来解这类问题.
2 3 的二进制数中的个数分别是0 1中二进制个数+1, 4-7中的二进制数目是0-3中二进制数目+1,依次类推.按照这种思路的代码.

class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> res;
        res.push_back(0);
        res.push_back(1);
        if(num==1) 
          return res;
        int alpha=2*2;
        for(int i=2;i<=num;++i){
            if(i==alpha){
                alpha=2*alpha;
            }
            res.push_back(res[i%(alpha/2)]+1);
        }
         return res; 
    }
};

另外一种思路.

class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> ret(num+1, 0);
        for (int i = 1; i <= num; ++i)
            ret[i] = ret[i&(i-1)] + 1;
        return ret;
    }
};

其中比较trick的地方是ret[i&i-1]这一步.
假设i的二进制最后一位向前有n>=0连续的0,那么倒数第n+1位为1,与n-1按位与后这n+1位一定变为0,前面的不变,因此1的个数必定会减少1.也即 ret[i] = ret[i&(i-1)] + 1成立.

时间和空间复杂度都是O(n).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值