GMSK调制解调系统的matlab性能仿真,对比维特比解调,1bit差分解调,2bit差分解调

目录

1.前言

2.算法运行效果图预览

3.算法运行软件版本

4.部分核心程序

5.算法仿真参数

6.算法理论概述

7.参考文献

8.算法完整程序工程


1.前言

      GMSK(Gaussian Minimum Shift Keying,高斯最小频移键控)是一种连续相位调制技术,基于MSK调制改进而来,通过高斯滤波器对基带信号预滤波,降低旁瓣功率,提高频谱效率。在本课题中,我们将对比GMSK的维特比解调,1比特差分解调,2bit差分解调三种解调方法。

2.算法运行效果图预览

(完整程序运行后无水印)

3.算法运行软件版本

Matlab2024b(推荐)或者matlab2022a

4.部分核心程序

(完整版代码包含中文注释和操作步骤视频)

    %解调,去载波
    N   = 300;  % 滤波器的阶数                                         
    F   = [0,fc-1000,fc+1000,Fs/2]*2/Fs;
    A   = [1,1,0,0];
    lpf = firls(N,F,A);
    
    I_dem = XNmod.*cos(2*pi*fc*t)*2;
    I_dem = conv(I_dem,lpf);
    I_dem = I_dem(N/2+1:N/2+length(I_temp));

    Q_dem = XNmod.*sin(2*pi*fc*t)*2;
    Q_dem = conv(Q_dem,lpf);
    Q_dem =-Q_dem(N/2+1:N/2+length(I_temp));
    %抽取
    I_dem_out = zeros(1,length(I_dem)/4);         
    Q_dem_out = zeros(1,length(Q_dem)/4);
    for i=1:length(I_dem_out)
       I_dem_out(i)=I_dem(4*(i-1)+1);
       Q_dem_out(i)=Q_dem(4*(i-1)+1);
    end
    %维特比算法
    decision = func_vitbi(I_dem_out,Q_dem_out,Lsymb,Nsamp,Nstate,state_all,State2,L,qt,9);
    %计算误码率
    [num,ber(SNR+1)] = symerr(dat1,decision);
01_0252m

5.算法仿真参数

L            = 3;                        %关联长度
Nstate       = 2^L*4;                    %计算状态数
Lsymb              = 30000;      %码元个数
Nsamp              = 8;          %采样个数
Rb                 = 24000;      %码元速率
fc                 = 96000;      %载波频率
alpha              = 0.25;       %BbTb值

6.算法理论概述

1.调制原理

2.维特比解调(Viterbi Demodulation)

       基于最大似然序列估计(MLSE),通过维特比算法搜索最优幸存路径,匹配GMSK的相位连续性约束,适用于高斯信道下的高性能解调。

3. 1比特差分解调

       利用相邻符号的相位差解调,忽略高斯滤波的长期记忆,仅通过1个符号间隔的相位变化估计当前符号,复杂度低但性能较差。

4. 2比特差分解调

考虑2个符号间隔的相位变化,部分补偿高斯滤波的记忆效应,性能优于1比特差分,复杂度适中。

解调方式原理核心复杂度性能(BER)适用场景
维特比解调MLSE + 路径搜索高(指数级于状态数)最优高速、高可靠性通信(如 GSM)
1 比特差分单符号相位差判决较差低速率、低成本场景
2 比特差分双符号相位差辅助判决中等平衡性能与复杂度的场景

       维特比解调通过精确匹配 GMSK 的相位连续性实现最优性能,但复杂度高;差分解调通过简化相位差计算降低复杂度,适合资源受限场景,其中 2 比特差分性能更接近维特比解调。

7.参考文献

[1]丁兴文,朱智勇,李海涛.基于维特比算法的GMSK信号非相干解调技术研究[J].遥测遥控, 2011(1):4.DOI:CNKI:SUN:YCYK.0.2011-01-006.

[2]吴团锋.基于2比特差分的GMSK信号解调算法[J].军事通信技术, 2002, 23(1):6.DOI:CNKI:SUN:JSTY.0.2002-01-008.

8.算法完整程序工程

OOOOO

OOO

O

### GMSK 解调算法中的 1bit 差分解调维特比译码 #### 1bit 差分解调原理 在GMSK系统中,1bit差分解调是一种简单有效的解调方式。该方法主要依赖于相邻符号之间的相位变化来进行数据恢复。具体来说,在发送端,二进制信息被映射成相对相移;而在接收端,则通过计算前后两个符号间的相位差异来决定原始传输的数据。 对于每一个接收到的信号样本\(r_k\),其对应的硬判决输出可以表示为: \[ \hat{b}_k = sign\left(Im\{\frac{y_{k}}{|y_{k}|} y^{*}_{k-1}\}\right), k=1,2,...,N \] 其中\(y_k=e^{-jπ/2 b_kb_{k−1}}\)代表理想情况下第\(k\)个时刻的载波相位旋转因子,而星号(*)表示共轭操作[^1]。 这种方案不仅结构简洁易于硬件实现而且具有较好的抗噪能力特别适合应用于移动通信环境中低信噪比场景下的高速率无线传输业务需求之中。 #### 维特比译码原理 另一方面,当涉及到更复杂的纠错编码时,如卷积码,通常会采用更为先进的软决策最大似然序列估计(MLSE)策略——即所谓的“维特比”算法来进行高效可靠的解码处理过程。此算法能够有效地追踪最有可能的状态转移路径从而使得最终得到的信息更加接近真实的发射序列。 给定一个长度为L的输入比特流经过某种特定形式的记忆型编码器转换之后形成了一系列可能存在的状态迁移轨迹图(Trellis Diagram),那么在整个观测期内针对每一步骤都存在多个候选分支可供选择。此时便可以通过动态规划的思想逐步累积各条路线上的度量值直到终点位置再回溯找出全局最优解所对应的实际消息内容[^2]。 ```matlab function decodedBits = viterbi_decoder(receivedSignal) % 初始化参数... for i = 1:length(receivedSignal)-1 % 更新前向概率并保存最佳路径索引 [~, bestPathIndex(:,i)] = max(logLikelihoodRatio); logLikelihoodRatio = updateLogLikelihoodRatio(...); end % 回溯寻找最短路径获得解码后的比特串 ... end ``` 上述伪代码展示了如何运用MATLAB编写一段简单的Viter比解码函数用于处理已知格式化的接受到的信号样例集合作为基础完成整个流程的设计思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值