两类问题的研究:汇率预测与蛇形问题搜索空间优化
在当今的科技与经济领域,时间序列预测和特定问题的搜索空间优化是两个备受关注的重要方向。下面将详细介绍基于二类模糊小波神经网络的汇率预测模型以及蛇形问题搜索空间的优化方法。
二类模糊小波神经网络用于汇率预测
汇率在外汇市场动态控制中起着关键作用,准确预测汇率对于众多商业和基金经理的成功至关重要。二类模糊小波神经网络(Type - 2 FWNN)系统被应用于设计美元/土耳其里拉(USA/TL)汇率的预测模型。
- 数据输入与输出 :预测模型使用四个输入数据点[x(t - 6)、x(t - 3)、x(t - 1)、x(t)],输出训练数据对应x(t + 3),即预测3天后的汇率值。训练输入/输出数据结构的第一个组件是四维输入向量,第二个组件是预测输出。
- 网络结构与参数学习 :Type - 2 FWNN结构有四个输入神经元和一个输出神经元。参数学习通过模糊c - 均值聚类和梯度下降算法完成。首先对输入空间进行二类模糊分类以确定聚类中心,用于组织模糊规则的前提部分;然后使用梯度算法学习后续部分的参数。小波参数a和b的初始值在区间[–1, 1]内随机选择,并根据给定输入信号进行更新。
- 模糊规则构建 :每个输入变量使用两个聚类,所有输入共得到8个聚类,每个聚类代表高斯隶属函数的中心。通过不同聚类组合为四个输入构建16条模糊规则。
- 训练与测试 :使用2007年1月至2009年4月的每日汇率统计数据进行训练,最后50个数据用于诊断测试。所有输入和输出数据缩放到区间[0,