如果数据非常大,读取速度较慢,可以采取以下几种优化策略来提升读取和处理速度:
- 使用多线程或多进程读取文件:可以使用TensorFlow的并行数据加载功能。
- 增加批处理大小:批量读取和处理数据。
- 减少内存占用:使用更高效的TensorFlow数据管道操作。
- 缓存数据:将数据缓存在内存或磁盘中,以便重复读取时速度更快。
下面是一个优化后的示例代码,结合上述策略:
优化示例代码
import tensorflow as tf
import pandas as pd
import dask.dataframe as dd
# 定义解析函数
def _parse_function(proto):
# 定义解析的特征结构
keys_to_features = {
'feature1': tf.io.FixedLenFeature([], tf.int64),
'feature2': tf.io.FixedLenFeature(