读取大型record格式数据为dataframe

如果数据非常大,读取速度较慢,可以采取以下几种优化策略来提升读取和处理速度:

  1. 使用多线程或多进程读取文件:可以使用TensorFlow的并行数据加载功能。
  2. 增加批处理大小:批量读取和处理数据。
  3. 减少内存占用:使用更高效的TensorFlow数据管道操作。
  4. 缓存数据:将数据缓存在内存或磁盘中,以便重复读取时速度更快。

下面是一个优化后的示例代码,结合上述策略:

优化示例代码

import tensorflow as tf
import pandas as pd
import dask.dataframe as dd

# 定义解析函数
def _parse_function(proto):
    # 定义解析的特征结构
    keys_to_features = {
   
   
        'feature1': tf.io.FixedLenFeature([], tf.int64),
        'feature2': tf.io.FixedLenFeature(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值