先简单介绍一下一般实矩阵的QR分解是什么;
再是源码,不过这次的C++源码是教材上的,提前说明,才五十几行代码就实现了一般实矩阵的QR分解,精炼且巧妙,若是我来写肯定是办不到这么简洁的,正如《C++ Primer》里作者所提倡的简洁是一种美德,这些代码简直就可以修身齐家治国平天下了;
然后再执行这个程序,得到结果,到后面再仔细地分析这个算法的过程(我自己清楚了,可能表达上也会无法传达,因为可能博客这东西更多的可能是写给自己看的······)。
矩阵的QR分解,就是说一个实矩阵,只要它的列向量线性无关,就可以进行QR分解,其中Q是正交矩阵,R是上三角矩阵,一个实矩阵(不一定是方阵),列向量线性无关就可以分解成一个正交矩阵和上三角矩阵的乘积,这就是一般实矩阵的QR分解。这个分解乍看不难,但是仔细计算起来却有难度,因为正交矩阵虽然在线性代数里听得多,见得多,但是实际用得不多,这次求矩阵特征值,整个一章就提到了两个正交矩阵,一个就是初等反射矩阵H,这是今天最关键的哥们,因为矩阵本身就是映射吗,而且这个映射比较特殊,一个向量经过这个矩阵处理,发现得到的向量大小不变,并且是关于某一个平面镜像对称的,这个平面就和H矩阵有关,另一个正交矩阵是旋转矩阵,这里不再细说。
知道什么是一般实矩阵的QR分解了,就给出源码,按照函数的观点,输入的参数是一个矩阵,这里实际上是二重指针,直接在函数体里面将矩阵的分解结果在黑框框里打印出来,以下是源码,以及执行的结果:
#include<iostream>
using namespace std;
//接下来把一般实矩阵的QR分解按函数的形式稍稍改写一下,输入是一般mxn实矩阵A,以及矩阵的行数m列数n,输出是QR形式的正交矩阵和上三角矩阵的乘积,
void Maqr(double ** A, int m, int n)//进行一般实矩阵QR分解的函数
{
int i, j, k, nn, jj;
double u, alpha, w, t;
double** Q = new double*[m]; //动态分配内存空间
for (i = 0; i<m; i++)