数值分析(五):C++实现一般实矩阵的QR分解

本文介绍了如何使用C++实现一般实矩阵的QR分解,包括QR分解的概念、C++源码实现、算法过程分析。重点讲解了正交矩阵Q和上三角矩阵R的性质,以及初等反射矩阵H在QR分解中的作用。通过矩阵运算和几何意义阐述了H矩阵的计算方法,最终展示了如何通过累乘H矩阵得到Q和R。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先简单介绍一下一般实矩阵的QR分解是什么;
再是源码,不过这次的C++源码是教材上的,提前说明,才五十几行代码就实现了一般实矩阵的QR分解,精炼且巧妙,若是我来写肯定是办不到这么简洁的,正如《C++ Primer》里作者所提倡的简洁是一种美德,这些代码简直就可以修身齐家治国平天下了;
然后再执行这个程序,得到结果,到后面再仔细地分析这个算法的过程(我自己清楚了,可能表达上也会无法传达,因为可能博客这东西更多的可能是写给自己看的······)。

矩阵的QR分解,就是说一个实矩阵,只要它的列向量线性无关,就可以进行QR分解,其中Q是正交矩阵,R是上三角矩阵,一个实矩阵(不一定是方阵),列向量线性无关就可以分解成一个正交矩阵和上三角矩阵的乘积,这就是一般实矩阵的QR分解。这个分解乍看不难,但是仔细计算起来却有难度,因为正交矩阵虽然在线性代数里听得多,见得多,但是实际用得不多,这次求矩阵特征值,整个一章就提到了两个正交矩阵,一个就是初等反射矩阵H,这是今天最关键的哥们,因为矩阵本身就是映射吗,而且这个映射比较特殊,一个向量经过这个矩阵处理,发现得到的向量大小不变,并且是关于某一个平面镜像对称的,这个平面就和H矩阵有关,另一个正交矩阵是旋转矩阵,这里不再细说。

知道什么是一般实矩阵的QR分解了,就给出源码,按照函数的观点,输入的参数是一个矩阵,这里实际上是二重指针,直接在函数体里面将矩阵的分解结果在黑框框里打印出来,以下是源码,以及执行的结果:

#include<iostream>
using namespace std;

//接下来把一般实矩阵的QR分解按函数的形式稍稍改写一下,输入是一般mxn实矩阵A,以及矩阵的行数m列数n,输出是QR形式的正交矩阵和上三角矩阵的乘积,

void Maqr(double ** A, int m, int n)//进行一般实矩阵QR分解的函数
{
	int i, j, k, nn, jj;
	double u, alpha, w, t;
	double** Q = new double*[m];   //动态分配内存空间
	for (i = 0; i<m; i++) 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值