J2的求导

本文深入探讨了在数学和编程中如何对J2矩阵进行求导,详细解释了线性代数和矩阵理论的基础,并提供了使用C++实现矩阵求导的示例代码,帮助读者理解并应用这一关键的数值计算技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

j =
 
[ (3*s0)/(2*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2)), (3*s1)/(2*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2)), (3*s2)/(2*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2)), (3*s3)/((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2), (3*s4)/((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2), (3*s5)/((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2)]
 
 
h =
 
[ 3/(2*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(1/2)) - (9*s0^2)/(4*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(3/2)),                                                                               -(9*s0*s1)/(4*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4^2 + 3*s5^2)^(3/2)),                                                                               -(9*s0*s2)/(4*((3*s0^2)/2 + (3*s1^2)/2 + (3*s2^2)/2 + 3*s3^2 + 3*s4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值