BERT(从理论到实践): Bidirectional Encoder Representations from Transformers【3】

本文利用BERT模型处理垃圾邮件分类任务,详细介绍了数据准备、模型构建与训练、以及模型评估与测试的过程。通过Python3和Tensorflow/Keras实现,最终在测试集上取得了96.32%的accuracy。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是本系列文章中的第3弹,请确保你已经读过并了解之前文章所讲的内容,因为对于已经解释过的概念或API,本文不会再赘述。

本文要利用BERT实现一个“垃圾邮件分类”的任务,这也是NLP中一个很常见的任务:Text Classification。我们的实验环境仍然是Python3+Tensorflow/Keras。


一、数据准备

首先,载入必要的packages/libraries。

import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
import numpy as np
import pandas as pd
import seaborn as sn

from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt

接下来,导入数据,这是一个CSV文件,里面包含了很多邮件文本(参见【1】)。


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值