sklearn中随机森林分类器RandomForestClassifier的实际应用

本文详细介绍如何使用Python的pandas和sklearn库对CSV数据进行预处理,并应用随机森林算法进行分类。从读取数据到特征编码,再到模型训练及可视化决策树,全程实战演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设我们有一份CSV文件(以部分为例):car_rf.csv
在这里插入图片描述

要用随机森林对其进行分类,其中最后一列视为标签,其余列视为特征

# coding = utf-8
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from IPython.display import Image
from sklearn import tree
import pydotplus

def read_dataset(fname = u"/car_rf.csv"):
    data = pd.read_csv(fname, index_col=0,encoding="utf-8",dtype=str)
    data = data.fillna(0)
    temp_col_list = ["",""] # ""中填特征的列名
    for i in temp_col_list:
        lables = data[i].unique().tolist()
        data[i] = data[i].apply(lambda n: lables.index(n))
    return data
train = read_dataset()

# ""中填标签的列名
y = train[""].values
X = train.drop([""], axis=1).values

rf = RandomForestClassifier(n_estimators=4, max_depth=2)
rf = rf.fit(X,y)

Estimators = rf.estimators_
for index, model in enumerate(Estimators):
    filename = str(index) + '.pdf'
    dot_data = tree.export_graphviz(model , out_file=None)
    graph = pydotplus.graph_from_dot_data(dot_data)
    Image(graph.create_png())
    graph.write_pdf(filename)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值