用sklearn和tensorflow做boston房价的回归计算的比较(1)--经典的sklearn集成模型

这篇博客通过对比sklearn和tensorflow在处理boston房价数据集上的回归计算,强调了sklearn的易用性和高效性。作者提到,尽管sklearn模型不包含卷积CNN等先进模型,但其简洁和准确让人印象深刻。文章内容包括数据预处理和模型应用,未展示参数优化部分,鼓励读者自行尝试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇是后面用tensorflow做回归时的一个参照,忍不住要说的是sklearn真是简单好用,要不是他没有卷积cnn等时髦模型,真是不想用其他家的了

本文链接:http://blog.csdn.net/baixiaozhe/article/details/54409764

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import GradientBoostingRegressor
#波士顿房价数据
boston=load_boston()
x=boston.data
y=boston.target
# print('波士顿数据:',x.shape)
# print(x[::100])
# print('波士顿房价:',y.shape)
# print(y[::100])

print('##################################################################')

# 随机挑选
train_x_disorder, test_x_disorder, train_y_disorder, test_y_disorder = train_test_split(x, y,
                                                                    train_size=0.8, random_state=33)
#数据标准化
ss_x = preprocessing.StandardScaler()
train_x_disorder = ss_x.fit
### 使用sklearn实现波士顿房价预测的回归分析 以下是使用 `scikit-learn` 实现波士顿房价预测的一个完整代码示例。该代码涵盖了数据加载、预处理、模型训练以及评估的过程。 #### 数据准备 波士顿房价数据集可以通过 `sklearn.datasets` 加载,其中包含了特征 (`data`) 目标值 (`target`) 的数组[^2]。 ```python from sklearn import datasets import numpy as np # 加载波士顿房价数据集 boston = datasets.load_boston() X = boston.data # 特征矩阵 y = boston.target # 目标向量 ``` #### 数据分割 为了验证模型性能,通常会将数据分为训练集测试集。这里可以使用 `train_test_split` 方法完成这一操作。 ```python from sklearn.model_selection import train_test_split # 将数据划分为训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 模型选择与训练 可以选择多种回归算法进行建模,例如线性回归、岭回归、Lasso 回归等。以下是一个简单的线性回归模型的例子: ```python from sklearn.linear_model import LinearRegression # 创建线性回归模型实例 linear_reg = LinearRegression() # 训练模型 linear_reg.fit(X_train, y_train) # 输出模型参数 print("Coefficients:", linear_reg.coef_) # 权重系数 w 值[^3] print("Intercept:", linear_reg.intercept_) # 截距 b 值[^3] ``` #### 模型预测与评估 利用训练好的模型对测试集进行预测,并计算其 R² 分数作为评价指标。 ```python from sklearn.metrics import r2_score # 对测试集进行预测 y_pred = linear_reg.predict(X_test) # 计算R²分数 r2 = r2_score(y_test, y_pred) print(f"R² Score on Test Set: {r2:.4f}") ``` 完整的代码如下所示: ```python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score import numpy as np # 加载波士顿房价数据集 boston = datasets.load_boston() X = boston.data y = boston.target # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 初始化并训练线性回归模型 linear_reg = LinearRegression() linear_reg.fit(X_train, y_train) # 打印模型参数 print("Coefficients:", linear_reg.coef_) print("Intercept:", linear_reg.intercept_) # 测试集上的预测 y_pred = linear_reg.predict(X_test) # 计算R²得分 r2 = r2_score(y_test, y_pred) print(f"R² Score on Test Set: {r2:.4f}") ``` 以上代码展示了如何使用 `LinearRegression` 进行波士顿房价预测的基础流程[^1]。 --- ####
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值