说明:本教程为将yolov5制作为docker镜像,通过容器实现yolov5的调用。
一、建立包含yolov5所需库的dockerfile,基于普通深度学习dockerfile修改,具体dockerfile文件内容如下:
# 继承PyTorch的cuda镜像
FROM pytorch/pytorch:1.11.0-cuda11.3-cudnn8-develLABEL maintainer = "[email protected]"
LABEL version = "0.2"
LABEL description = "prepare deep learning environment"# 指定docker镜像中,默认的工作路径是/PD
WORKDIR /home/lwf/PD/yolov5COPY ./yolov5/ /home/lwf/PD/yolov5/
RUN rm /etc/apt/sources.list.d/cuda.list \
&& rm /etc/apt/sources.list.d/nvidia-ml.list \
&& apt-get update \
&& pip config set global.index-url https://pypi.douban.com/simple/ \
&& apt install -y libgl1-mesa-glx \
&& apt-get install -y libglib2.0-dev \
&& pip install gitpython>=3.1.30 \
&& pip install pand