在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
class Solution {
/**
* @Title: findNumberIn2DArray
* @Description: 二分查找
* @author: itbird
* @date 2022年3月15日 下午2:39:03
* @param matrix
* @param target
* @return boolean 时间复杂度: O(n+m) 空间复杂度: O(1)
*/
public boolean findNumberIn2DArray(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return false;
}
// 题目中,数组每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序
// 分析题意,数组可以认为有序的数组,我们需要找到一个切入点
// 从数组左下角开始遍历,往右是递增的,往上是递减的,所以我们可以设计算法如下
// 开始从二维数组的左下角开始,遍历二维数组
int i = matrix.length - 1;
int j = 0;
while (i >= 0 && j < matrix[0].length) {
if (matrix[i][j] == target) {
// 如果当前元素为目标元素,则返回
return true;
} else if (matrix[i][j] < target) {
// 如果当前元素小于目标元素,则由于数组的特性是往右是递增,所以此时往右移动一位
j++;
} else {
// 如果当前元素大于目标元素,则由于数组的特性是往上是递减,所以此时往上移动一位
i--;
}
}
//如果数组遍历完,依然找不到target,则返回false
return false;
}
}