AC剑指 Offer 04. 二维数组中的查找

这篇博客介绍了如何在一个特殊排序的二维数组中高效地查找目标整数。数组的每一行从左到右递增,每一列从上到下递增。通过二分查找算法,从数组的左下角开始,根据目标值与当前元素的比较,动态调整搜索方向,最终达到查找目标。当找到目标值时返回true,否则返回false。这种方法的时间复杂度为O(n+m),空间复杂度为O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:

现有矩阵 matrix 如下:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。

class Solution {
	/**
	 * @Title: findNumberIn2DArray
	 * @Description: 二分查找
	 * @author: itbird
	 * @date 2022年3月15日 下午2:39:03
	 * @param matrix
	 * @param target
	 * @return boolean 时间复杂度: O(n+m) 空间复杂度: O(1)
	 */
	public boolean findNumberIn2DArray(int[][] matrix, int target) {
		if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
			return false;
		}
		// 题目中,数组每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序
		// 分析题意,数组可以认为有序的数组,我们需要找到一个切入点
		// 从数组左下角开始遍历,往右是递增的,往上是递减的,所以我们可以设计算法如下

		// 开始从二维数组的左下角开始,遍历二维数组
		int i = matrix.length - 1;
		int j = 0;
		while (i >= 0 && j < matrix[0].length) {
			if (matrix[i][j] == target) {
				// 如果当前元素为目标元素,则返回
				return true;
			} else if (matrix[i][j] < target) {
				// 如果当前元素小于目标元素,则由于数组的特性是往右是递增,所以此时往右移动一位
				j++;
			} else {
				// 如果当前元素大于目标元素,则由于数组的特性是往上是递减,所以此时往上移动一位
				i--;
			}
		}
		//如果数组遍历完,依然找不到target,则返回false
		return false;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

itbird01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值