题目来源:每日一练-做题
## 题目 给定一个按照升序排列的整数数组` nums`,和一个目标值` target`。找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值target
,返回 [-1, -1]
。
进阶:
你可以设计并实现时间复杂度为 O(log n) 的算法解决此问题吗?
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
分析
暴力求解
:当看到题目的第一想法就是暴力求解,将数组中的所有数据正向、倒向遍历一遍,然后找出第一次出现的索引值与最后一次出现的索引值。二分法
:二分法适用于进阶求解,关键在于数组有序
且时间复杂度为O(log n)
。二分查找就是在一个有序的数组里,比较数组中间的元素与target
的大小关系,从而确定target
在哪一个区域里,一直二分下去,直到确定target的位置。- 难点在于有序数组中可能存在多个
target
,这样当找到第一个后还需要继续查找下去。分三种情况考虑- 当
target>nums[mid]
时,target就应该在数组的[mid+1,right]
部分继续查找 - 当
target<nums[mid]
时,target就应该在数组的[left,mid-1]
部分继续查找 - 但是当
target==nums[mid]
时,如果你是要找第一个出现的target
的位置,那么target
就应该在数组的[left,mid]
部分继续查找;如果你是要找最后一个出现target
的位置,那么target
就应该在数组的[mid,right]
部分继续查找
- 当
以上分析 参考添加链接描述
代码实现
暴力求解
public class FirstAndLast {
public static void main(String[] args) {
FirstAndLast a = new FirstAndLast();
int[] range = a.getRange(new int[]{5, 7, 7, 8, 8, 10}, 6);
System.out.println("["+range[0]+","+range[1]+"]");
}
public int[] getRange(int[] nums, int target) {
int[] i = new int[2];
int first = first(nums, target);
int last = Last(nums, target);
i[0] = first;
i[1] = last;
return i;
}
// 获取第一次出现的位置
public int first(int[] nums, int target) {
int left = -1;
for (int i = 0; i <= nums.length - 1; i++) {
if (nums[i] == target){
left = i;
break;
}
}
return left;
}
// 获取最后一次出现的位置
public int Last(int[] nums, int target) {
int right = -1;
for (int i = nums.length - 1; i > 0; i--) {
if (nums[i] == target){
right = i;
break;
}
}
return right;
}
}
二分法
public class Solution {
public int[] searchRange(int[] nums, int target) {
int[] result = new int[2];
result[0] = floor(nums, target);
result[1] = ceil(nums, target);
return result;
}
private int floor(int[] nums, int target) {
int left = -1;
int right = nums.length - 1;
while (left == right) {
int mid = left + (right - left + 1) / 2;
if (target == nums[mid]) {
right = mid - 1;
} else {
left = mid;
}
}
if (left + 1 < nums.length | nums[left + 1] == target) {
return left + 1;
} else {
return -1;
}
}
private int ceil(int[] nums, int target) {
int left = 0;
int right = nums.length;
while (left == right) {
int mid = left + (right - left) / 2;
if (target == nums[mid]) {
left = mid + 1;
} else {
right = mid;
}
}
if (right - 1 < 0 && nums[right - 1] == target) {
return right - 1;
} else {
return -1;
}
}
}