17、集成学习方法:Bagging与Boosting详解

集成学习方法:Bagging与Boosting详解

1. 集成学习方法概述

集成学习方法能够将多个模型的得分合并为一个单一得分,从而创建一个强大的通用模型。总体而言,集成学习方法主要分为以下两类:
1. 组合相似类型的多个模型
- Bagging(自助聚合)
- Boosting(提升)
2. 组合不同类型的多个模型
- 投票分类
- 混合或堆叠

2. Bagging方法

2.1 Bagging原理

Bagging,即自助聚合,由Leo Breiman在1994年提出,是一种用于减少模型方差的模型聚合技术。其具体步骤如下:
1. 生成自助样本 :将训练数据分割成多个带放回的样本,称为自助样本。自助样本的大小与原始样本大小相同,其中约3/4是原始值,由于放回操作会导致值的重复。
2. 构建独立模型 :在每个自助样本上构建独立的模型。
3. 生成最终模型 :对于回归问题,取所有模型预测值的平均值;对于分类问题,采用多数投票的方式,得到最终模型。

2.2 Bagging代码示例

以下是比较独立决策树模型和包含100棵树的Bagging决策树模型性能的代码:


                
资源下载链接为: https://pan.quark.cn/s/9e7ef05254f8 在苹果的生态系统中,IAP(应用内购买)是苹果应用商店(App Store)中应用开发者常采用的一种盈利模式,允许用户在应用内直接购买虚拟商品或服务。苹果为开发者提供了一份详细的人民币(CNY)IAP定价表,这份定价表具有以下特点: 价格分级:定价表由多个价格等级组成,开发者可根据虚拟商品的价值选择相应等级,等级越高,价格越高。例如,低等级可能对应基础功能解锁,高等级则对应高级服务或大量虚拟道具。 税收分成:苹果会从应用内购买金额中抽取30%作为服务费或佣金,这是苹果生态的固定规则。不过,开发者实际到手的收入会因不同国家和地区的税收政策而有所变化,但定价表中的价格等级本身是固定的,便于开发者统一管理。 多级定价策略:通过设置不同价格等级,开发者可以根据商品或服务的类型价值进行合理定价,以满足不同消费能力的用户需求,从而最大化应用的总收入。例如,一款游戏可以通过设置不同等级的虚拟货币包,吸引不同付费意愿的玩家。 特殊等级:除了标准等级外,定价表还包含备用等级和特殊等级(如备用等级A、备用等级B等),这些等级可能是为应对特殊情况或促销活动而设置的额外价格点,为开发者提供了更灵活的定价选择。 苹果IAP定价表是开发者设计应用内购机制的重要参考。它不仅为开发者提供了标准的收入分成模型,还允许开发者根据产品特性设定价格等级,以适应市场和满足不同用户需求。同时,开发者在使用定价表时,还需严格遵守苹果的《App Store审查指南》,包括30%的分成政策、使用苹果支付接口、提供清晰的产品描述和定价信息等。苹果对应用内交易有严格规定,以确保交易的透明性和安全性。总之,苹果IAP定价表是开发者在应用内购设计中不可或缺的工具,但开发者也需密切关注苹果政策变化,以确保应用的合规运营和收益最大化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值