20、文本挖掘与推荐系统技术详解

文本挖掘与推荐系统技术详解

1. 词性标注与词干提取

1.1 感知机词性标注器

感知机词性标注器(Perceptron Tagger)是自然语言处理中常用的工具,用于为文本中的每个单词标注词性。以下是使用感知机词性标注器的示例代码:

from nltk.tag.perceptron import PerceptronTagger
PT = PerceptronTagger()
print (PT.tag('This is a sample English sentence'.split()))

输出结果:

[('This', 'DT'), ('is', 'VBZ'), ('a', 'DT'), ('sample', 'JJ'), ('English', 'JJ'), ('sentence', 'NN')]

若想了解特定词性标签的含义,可以使用 nltk.help.upenn_tagset 函数,例如:

nltk.help.upenn_tagset('NNP')

输出结果:

NNP: noun, proper, singular

1.2 词干提取

词干提取是将单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值