Tensorflow2 二次训练和断点续训

本文介绍了在TensorFlow2环境下,如何在训练过程中以特定条件(如每2个周期或最佳验证精度)保存模型,并在训练终止后进行二次训练。通过设置保存频率、监控指标和最佳模型保存策略,确保模型的质量。文章提供了完整的代码示例和配置文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Environment

  • Tensorflow2.0.0
  • python3.6

问题描述

每轮训练中以特定方式(固定频率、最高准确率或最低loss等)存储模型,停止训练后,基于已存储的模型进行二次训练。

以特定方式保存模型

callbacks = [
            tf.keras.callbacks.ModelCheckpoint(filepath=save_args['./saved_models/model_epoch{epoch}.h5'],
                                               # save_freq=save_args['2'], 
                                               # save_weights_only=True,
                                               #monitor='val_accuracy',
                                               #mode='max',
                                               #save_best_only=True
                                               ),
            tf.keras.callbacks.TensorBoard(log_dir="./logs/callback_test", update_freq='batch')]
  • save_freq=save_args['2']
    • 每2 epoches保存一次
  • monitor='val_accuracy',
    mode='max',
    save_best_only=True
    • 无论多少epoch,只保存val_accuracy最大的一次

加载模型保存好的模型

# 重新创建完全相同的模型,包括其权重和优化程序
self.model = tf.keras.models.load_model('./saved_models/callback_test/model_epoch1.h5')

# 显示网络结构
self.model.summary()

存储最后一轮epoch模型

#sava the model as pb/h5
#self.model.save(save_args['pb_save_path']+'/1120202001.h5')
#tf.saved_model.save(self.model, save_args['pb_save_path'])

完整代码

import os
import numpy as np
import tensorflow as tf
import random
import yaml
import warnings

warnings.filterwarnings('ignore')


class Trainer:

    def __init__(self, config_path, config_lo
<think>好的,我现在需要帮助用户解决如何在DeepLabV3+模型训练中断后继续训练的问题。用户提到了使用TensorFlow或PyTorch,所以我应该分别考虑这两种框架下的解决方案。 首先,我需要回忆一下断点续训的一般步骤。无论是TensorFlow还是PyTorch,核心都是保存加载模型的状态,包括模型参数、优化器状态、以及当前的epoch损失值等信息。这样在恢复训练时,可以从中断的地方继续,而不用从头开始。 对于TensorFlow,我记得可以使用回调函数ModelCheckpoint来定期保存模型。用户需要在训练时设置这个回调,这样在中断后,可以加载最新的检查点。然后使用model.fit的initial_epoch参数来指定从哪个epoch开始继续训练。需要注意的是,TensorFlow的检查点可能只保存模型权重,所以优化器的状态可能需要额外处理,特别是在使用自定义优化器或学习率调度器时。 然后是PyTorch部分。PyTorch通常通过torch.save来保存整个模型的状态字典,包括模型、优化器、epoch等信息。恢复训练时,需要先加载这些状态,然后重新初始化模型优化器,并将状态加载进去。之后在训练循环中,从保存的epoch开始继续训练。这里要确保数据加载器的状态也能正确恢复,可能需要保存随机数生成器的状态,否则数据顺序可能不同,影响训练结果。 接下来,我需要考虑用户可能遇到的问题。例如,检查点没有保存优化器状态,或者保存的格式不正确。这时候可能需要检查保存加载的代码是否正确,确保所有必要的部分都被包含。另外,如果用户使用的是分布式训练,情况会更复杂,可能需要额外的处理步骤。 然后,我需要验证一下步骤是否正确。比如,在TensorFlow中,是否真的需要设置initial_epoch,或者是否有其他参数需要注意。在PyTorch中,加载模型后是否必须调用model.train()来确保模型处于训练模式。同时,提醒用户注意学习率调度器的状态是否被正确保存恢复,因为有些调度器是根据epoch来调整学习率的,如果epoch没有恢复,可能会导致学习率不正确。 用户可能还想知道如何自动保存检查点,比如每隔几个epoch保存一次,或者只在验证损失改善时保存。这时候需要指导他们在回调函数或训练循环中添加相应的逻辑。 最后,生成相关问题时要覆盖常见的后续问题,比如如何调整学习率、处理不同数据集、多GPU训练下的断点续训,以及检查点无法加载时的解决方法。这些问题可以帮助用户深入理解断点续训的各个方面,并解决可能遇到的困难。</think>### 如何在DeepLabV3+训练被中断后继续训练 #### 一、核心原理 断点续训的核心是通过保存加载训练状态实现连续性。需要保存以下要素: 1. 模型权重:记录网络参数$W_t$偏置$b_t$ 2. 优化器状态:动量参数$v_t$、梯度二阶矩估计$m_t$等(如Adam优化器) 3. 训练元数据:当前epoch数$n$、学习率$\eta$、损失值$L$等 #### 二、TensorFlow实现方法 ```python # 保存检查点 checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) manager = tf.train.CheckpointManager(checkpoint, directory='./ckpt', max_to_keep=3) # 训练循环中 for epoch in range(initial_epoch, total_epochs): # ...训练步骤... manager.save() # 恢复训练 latest_ckpt = tf.train.latest_checkpoint('./ckpt') checkpoint.restore(latest_ckpt) initial_epoch = int(latest_ckpt.split('-')[1]) # 解析已完成的epoch数 ``` #### 三、PyTorch实现方法 ```python # 保存状态 torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss, }, 'checkpoint.pth') # 加载状态 checkpoint = torch.load('checkpoint.pth') model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 ``` #### 四、注意事项 1. 数据加载器状态恢复:需保存随机数生成器状态`torch_rng_state``numpy_rng_state` 2. 学习率调度器状态:需保存`lr_scheduler.state_dict()` 3. 混合精度训练:需额外保存梯度缩放器状态`scaler.state_dict()` 4. 分布式训练:需使用`module.state_dict()`获取完整模型参数[^1]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值