机器学习笔记 - 互信息Mutual Information

本文介绍了互信息作为特征选择的指标,详细阐述了互信息的定义、衡量标准及其在汽车数据集上的应用。互信息能衡量特征与目标变量间的非线性关系,有助于识别潜在的关联,但无法检测特征间的交互作用。示例展示了如何计算互信息得分,并通过数据可视化揭示特征与价格的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、概述

        遇到一个新的数据集时重要的第一步是使用特征效用指标构建排名,该指标是衡量特征与目标之间关联的函数。然后,您可以选择一小部分最有用的功能进行初始开发。

        我们将使用的度量称为“互信息”。互信息很像相关性,因为它衡量两个量之间的关系。互信息的优点是它可以检测任何一种关系,而相关性只检测线性关系。

        互信息是一个很好的通用指标,在功能开发开始时特别有用,因为您可能还不知道要使用哪种模型。

        互信息易于使用和解释,计算效率高,理论上有根据,抗过拟合,并且能够检测任何类型的关系。

2、相互信息及其衡量标准

        互信息描述了不确定性方面的关系。 两个量之间的互信息 (MI) 是衡量一个量的知识减少另一个量的不确定性的程度。 如果你知道一个特性的价值,你会对目标更有信心吗?

        这是 Ames Housing 数据中的一个示例。 该图显示了房屋的外观质量与其售价之间的关系。 每个点代表一所房子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值