
自然语言处理和大语言模型
文章平均质量分 91
我理解你,不,你不理解我。
坐望云起
专注人工智能、深度学习、机器学习、计算机视觉、图像处理等领域
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大语言模型学习笔记 LangChain简述
La是一个由大型语言模型 (LLM) 驱动的应用程序开发框架。LangChain 旨在为开发人员提供一系列功能,利用大型语言模型简化应用程序的创建和管理。LangChain 可充当几乎所有 LLM 的通用接口,提供集中式开发环境来构建 LLM 应用程序并将其与外部数据源和软件工作流集成。LangChain 的模块化方法允许开发人员动态比较不同的提示甚至不同的基础模型,而无需重写代码。这种模块化环境还允许使用多个 LLM 的程序:例如,一个应用程序使用一个 LLM 来解释用户查询,另一个 LLM 来编写响应。原创 2024-08-02 10:35:16 · 1450 阅读 · 0 评论 -
自然语言处理(NLP)与大语言模型(LLM) 主要差异
有句俗话叫“没坏就不要修”,很多公司都有运行良好的 NLP 系统。这些公司没有动力重新开始使用 Gen AI,如果他们决定尝试 LLM,他们很可能会先解决全新的问题(也许是传统方法无法解决的问题)。因此,使用“传统”NLP 技术的现有解决方案完全过时还需要相当长的时间(如果真的发生的话)。与此同时,这些公司将需要在生产中维护现有的 NLP 系统。这意味着他们仍然需要知道如何调试文本预处理管道、评估 NLP 模型,甚至可能从文本数据中提取新特征的员工,以不断改进现有系统。原创 2024-07-10 12:08:32 · 3855 阅读 · 0 评论 -
NLP大语言模型的缩放定律
论文《神经语言模型的缩放定律》包含对交叉熵损失的语言模型性能的经验缩放定律的研究,重点关注Transformer架构。实验表明,测试损失与模型大小、数据集大小和用于训练的计算量呈幂律关系,某些趋势跨越超过七个数量级。这意味着简单的方程控制着这些变量之间的关系,这些方程可用于创建最有效的训练配置,以训练非常大的语言模型。此外,网络宽度或深度等其他架构细节似乎在很大范围内影响甚微。原创 2024-06-22 09:26:00 · 1127 阅读 · 0 评论 -
2024 年值得关注的 9 个最佳开源大语言模型
由于 LLM 是开放的,你不必为模型本身付费,但你需要考虑与之相关的其他成本,例如所需的资源、托管和培训。最复杂的是 Mistral 7B 变压器模型、Mistral 8x7B 开放模型,以及一个较小的英语版本,内容容量为 8K。由于其完全开源的特性以及与同等质量和尺寸的同类模型相比更低的拥有成本,GPT-NeoX-20B 更易于研究人员、技术创始人和开发人员使用。使用 1800 亿个标记的数据集,该 LLM 在训练期间所需的碳足迹仅为 GPT-3 的 1/7,并且表现出与 GPT-3 相当的性能。原创 2024-06-18 16:39:55 · 2815 阅读 · 0 评论 -
大语言模型微调过程中的 RLHF 和 RLAIF 有什么区别?
在 RLHF 和 RLAIF 之间进行选择时,不存在一刀切的解决方案。选择取决于各种因素,例如业务目标、目标受众人口统计、语言要求和预算限制。如果您的主要目标是保持所有内容资产的一致性和质量,RLHF 可能是理想的选择。但是,如果您的目标是多元化的全球市场,并且需要使您的内容适应当地语言和文化,RLAIF 可以提供您所需的灵活性和定制功能。考虑解决方案的可扩展性及其与现有内容管理系统和工作流程的兼容性。RLHF可能更适合语言要求标准化的大规模内容运营,而RLAIF则在全球整合和多语言支持方面表现出色。原创 2024-04-23 10:06:01 · 1758 阅读 · 0 评论 -
适合初学者的自然语言处理 (NLP) 综合指南
自然语言处理 (NLP) 是人工智能 (AI) 最热门的领域之一,现在主要指大语言模型了。这要归功于人们热衷于能编写故事的文本生成器、欺骗人们的聊天机器人以及产生照片级真实感的文本到图像程序等应用程序。近年来,计算机理解人类语言、编程语言,甚至类似于语言的生物和化学序列(例如 DNA 和蛋白质结构)的能力发生了革命。最新的人工智能模型正在解锁这些领域,以分析输入文本的含义并生成有意义的、富有冲击力(你懂的)的输出。原创 2024-04-21 09:27:52 · 2506 阅读 · 2 评论 -
自然语言处理 (NLP) 的技术演变史
本文的目标是了解自然语言处理 (NLP) 的历史,包括 Transformer 体系结构如何彻底改变该领域并帮助我们创建大型语言模型 (LLM)。基础模型(如 GPT-4)是最先进的自然语言处理模型,旨在理解、生成人类语言并与之交互。 要理解基础模型的重要性,有必要探索它们的起源,它们源于人工智能和自然语言处理领域的进步。许多 LLM 都是开源的,可通过 Hugging Face 等社区公开获取。很多云服务商还提供了最常用的 LLM 作为基础模型。基础模型是通过大型文本预先训练的,可以原创 2024-04-21 07:00:00 · 1773 阅读 · 0 评论 -
什么是大语言模型以及如何构建自己的大型语言模型?
LLM 对于无数的应用程序非常有用,通过从头开始构建一个,您可以了解底层的 ML 技术,并可以根据您的特定需求定制 LLM。大型语言模型是一种 ML 模型,可以执行各种自然语言处理任务,从创建内容到将文本从一种语言翻译为另一种语言。“大”一词描述了语言模型在学习期间可以改变的参数数量,拥有数十亿、百亿、千亿,甚至万亿级别的参数。大型学习模型必须经过预训练,然后进行微调,以教授人类语言来解决文本分类、文本生成挑战、问题解答和文档摘要。顶级大型语言模型解决各种问题的潜力 在金融、医疗保健和娱乐等领域都有应用。原创 2024-04-19 20:13:52 · 2382 阅读 · 0 评论