本题要求实现一个判断素数的简单函数、以及利用该函数计算给定区间内素数和的函数。
素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。
函数接口定义:
int prime( int p );
int PrimeSum( int m, int n );
其中函数prime
当用户传入参数p
为素数时返回1,否则返回0;函数PrimeSum
返回区间[m
, n
]内所有素数的和。题目保证用户传入的参数m
≤n
。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
int prime( int p );
int PrimeSum( int m, int n );
int main()
{
int m, n, p;
scanf("%d %d", &m, &n);
printf("Sum of ( ");
for( p=m; p<=n; p++ ) {
if( prime(p) != 0 )
printf("%d ", p);
}
printf(") = %d\n", PrimeSum(m, n));
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
-1 10
输出样例:
Sum of ( 2 3 5 7 ) = 17
解题思路
素数的定义:只能是1和数本身整除的数
我们从定义知道只要找到其他的数能整除它,它就不是素数。
废话不多说直接上代码(盘他)
//判断传入数是否是素数,是为1,否者0
int prime(int p)
{
int result = 0,i;
//从2开始到p循环查找整除的数
for (i = 2; i < p; i++)
{
//余数为0就为非素数
if (p % i == 0)
{
break;
}
}
if (i==p)
{
result=1;
}
return result;
}
int PrimeSum(int m, int n)
{
int Sum = 0;
//是素数就累加
for(int i=m;i<=n;i++)
{
if (prime(i))
{
Sum+=i;
}
}
return Sum;
}