
9.人工智能
文章平均质量分 93
人工智能(Artificial Intelligence),英文缩写为AI。 是新一轮科技革命和产业变革的重要驱动力量, 是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
正在走向自律
(1)荣誉与身份:2024年度CSDN博客之星TOP71、CSDN博客专家/全栈领域优质创作者、阿里云开发者社区专家博主、华为云.云享专家!全网中文IP:正在走向自律
(2)领域专长:人工智能、AI大模型、数字人、Java、Python、服务器管理、第三方支付等!
(3)创作理念:通过分享 IT 行业的专业见解、案例分析和实用技巧,帮助读者更好地了解 IT 领域的发展动态和应用实践!
(4)粉丝支持:感谢全网3万+粉丝的关注与支持,我会继续努力,带来更多优质内容!
(5)座右铭:创作之路漫漫其修远兮,吾将上下而求索!
(6)关注交流:微信公众号《正在走向自律1》,交流技术心得,领取技术干货!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能、机器学习、深度学习:2025技术革命的深度解析
本文系统梳理了人工智能(AI)、机器学习(ML)和深度学习(DL)三大技术领域。首先介绍了AI的定义、发展历程及核心概念,包括知识表示、搜索算法、推理和规划等,并列举了自然语言处理、计算机视觉等典型应用场景。其次解析了机器学习的理论基础,涵盖监督学习、无监督学习等学习范式,重点介绍了线性回归、决策树等常用算法及其在金融、医疗等领域的应用案例。最后深入探讨了深度学习技术,详述了神经网络、激活函数等关键概念,分析了CNN、RNN等主流架构的优势,并展示了其在图像识别、语音处理等领域的突破性应用。原创 2025-08-10 23:53:25 · 6723 阅读 · 12 评论 -
解锁蓝耘MaaS平台:免费千万Token打造智能客服新体验
蓝耘MaaS平台体验与智能客服实践指南 本文详细介绍了蓝耘MaaS平台的注册、API调用及知识库构建全流程。平台通过云计算模式提供丰富的预训练模型(如DeepSeek-R1),支持自然语言处理等任务,显著降低AI开发门槛。核心内容包括: API调用解析:以Python为例演示流式响应对话接口,强调API Key安全与参数配置技巧; 知识库实战:结合AnythingLLM工具构建本地知识库,提升智能客服应答精准度; 应用场景:在线教育答疑与电商咨询案例展示模型多轮对话能力!原创 2025-06-01 23:49:57 · 1564 阅读 · 74 评论 -
探索GpuGeek:AI开发者与中小企业的算力宝藏平台
摘要:GpuGeek 作为面向 AI 开发者和中小企业的 AI 赋能平台,在 AI 时代具有重要意义。它提供丰富算力资源、多元框架工具等,涵盖深度学习项目、大模型研究等多方面,助力用户应对算力挑战,推动 AI 技术普及应用,未来还将持续拓展提升。原创 2025-05-14 20:41:17 · 7483 阅读 · 121 评论 -
深度学习:重塑学校教育的未来
作为深度学习的基础,神经网络通过模拟人脑的结构和功能进行学习。神经网络由大量的简单处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统。神经元接收多个输入,通过对输入进行加权求和,并经过激活函数的处理后产生输出。神经网络可以分为前馈神经网络和反馈神经网络。前馈神经网络采用单向多层的结构,各个神经元分层排列,每个神经元之于前一层的神经元相连,接受前一层的输入,并输出传递给下一层,各层之间没有反馈。输入节点负责外界信息的输入,不进行任何计算,仅向下一层的节点传递信息。原创 2024-12-11 21:58:11 · 2069 阅读 · 61 评论 -
《机器学习实战指南:CSDN 经验集成》
机器学习是人工智能的一个重要分支,它是一种通过从数据中学习和发现模式,从而使计算机系统能够进行自主学习和改进的方法。一、预测和分类机器学习可以通过对历史数据的学习,对未来的事件进行预测和分类。例如,根据过去的销售数据预测未来的销售趋势,或将电子邮件分类为垃圾邮件或非垃圾邮件。二、自动化和智能化机器学习使得计算机能够自动化执行任务,例如自动驾驶汽车、自动语音识别、自动翻译和智能助理等,提高了生产力和效率。三、个性化推荐。原创 2024-12-09 17:30:59 · 1023 阅读 · 2 评论 -
AI 学习框架:开启智能未来的钥匙
人工智能学习框架在当今的科技发展中占据着至关重要的地位,它为开发者提供了强大的工具,有力地推动了人工智能的发展,同时也极大地降低了开发的难度。人工智能学习框架是帮助开发者和研究人员快速构建、训练、评估和部署 AI 模型的软件工具包。这些框架通常提供高度抽象的接口,以便简化数据预处理、模型定义、优化算法实现等一系列过程,从而提升 AI 开发的效率。以深度学习框架为例,它就如同一套乐高积木,各个组件类似于乐高积木中的不同模块。开发者可以像砌积木一样,利用这些模块构建出符合需求的神经网络。原创 2024-12-09 17:19:51 · 5144 阅读 · 64 评论 -
深度学习(十):伦理与社会影响的深度剖析(10/10)
深度学习作为一项强大的技术,在带来诸多益处的同时,也引发了一系列伦理和社会问题。在伦理方面,数据隐私、偏见以及责任归属等挑战亟待解决。我们需要借鉴成功的法规案例,如欧盟的 GDPR,加强数据管理和隐私保护,努力消除算法偏见,并建立明确的责任归属机制。在社会影响方面,自动化虽然对传统职业造成冲击,但也创造了新的职业机会。个人、社会和教育机构都应积极应对,提升技能和加强人才培养,以适应就业结构的变化。原创 2024-11-03 19:09:21 · 2470 阅读 · 64 评论 -
深度学习(九):推荐系统的新引擎(9/10)
深度学习在推荐系统中的应用为用户带来了更智能、更个性化的推荐体验。通过与推荐系统的融合,深度学习解决了传统推荐系统在处理大规模、高维度数据时的力不从心,以及冷启动和数据稀疏等问题。在应用方式上,各种 2vec 的应用、基于神经协同过滤的推荐以及在个性化推荐系统中的特征表示学习、序列模型和嵌入模型等,都为推荐系统的准确性和个性化提供了有力支持。构建深度学习推荐系统时,需要考虑整体框架与技术选择,如大数据框架和深度学习模型的选择。同时,通过具体案例分析,可以更好地理解深度学习在推荐系统中的实际应用。原创 2024-10-31 19:02:23 · 1901 阅读 · 79 评论 -
深度学习(八) TensorFlow、PyTorch、Keras框架大比拼(8/10)
深度学习框架在当今人工智能和机器学习领域中占据着至关重要的地位。其中,TensorFlow 由 Google 开发,自 2015 年发布以来,凭借其灵活的计算图、自动微分功能以及跨平台支持等特点,迅速成为主流深度学习框架之一。它在图像识别、自然语言处理、语音识别等多个领域都有广泛应用。例如,在图像识别任务中,通过卷积神经网络能够准确识别物体、人脸和车辆等。PyTorch 由 Facebook 推出,以其动态图机制、简洁直观的 API 和强大的社区支持备受青睐。原创 2024-10-31 11:14:46 · 1480 阅读 · 3 评论 -
深度学习(七)深度强化学习:融合创新的智能之路(7/10)
深度强化学习作为一种融合了深度学习和强化学习的技术,在游戏、自动驾驶等领域展现出了巨大的潜力。它结合了深度学习的强大感知能力和强化学习的优秀决策能力,能够处理复杂的任务和环境。然而,深度强化学习仍然面临着一些挑战,如数据需求、计算资源、可解释性和安全性等。未来,研究人员将致力于解决这些挑战,推动深度强化学习的发展,使其在更多领域发挥重要作用。原创 2024-10-29 17:06:44 · 1866 阅读 · 96 评论 -
深度学习(六)CNN:图像处理的强大工具(6/10)
卷积神经网络(Convolutional Neural Networks,CNN)是深度学习的代表算法之一,在深度学习中占据着重要地位。CNN 的发展历程可追溯至 20 世纪 80 至 90 年代,时间延迟网络和 LeNet - 5 是最早出现的卷积神经网络。随着深度学习理论的提出和数值计算设备的改进,CNN 在 21 世纪后得到了快速发展,并被广泛应用于计算机视觉、自然语言处理等领域。CNN 的结构组成主要包括输入层、卷积层、池化层、全连接层和 Softmax 层等。原创 2024-10-27 23:48:01 · 2757 阅读 · 17 评论 -
深度学习(五):语音处理领域的创新引擎(5/10)
深度学习在语音处理领域取得了显著的成就,为语音识别、语音合成、语音增强等任务提供了强大的解决方案。通过深度神经网络、卷积神经网络和循环神经网络等模型,能够从语音信号中提取特征并进行处理,提高了语音处理的准确性和鲁棒性。同时,数据预处理技术如采样、分帧、加窗等也为深度学习模型的应用提供了基础。在实际应用中,智能语音助手和语音翻译等案例展示了深度学习在语音处理领域的价值。案例一:使用 Python 的 TensorFlow 实现简单的语音识别# 假设已经有预处理好的语音数据和标签# 构建模型])原创 2024-10-24 06:00:00 · 1533 阅读 · 5 评论 -
深度学习(四):自然语言处理的强大引擎(4/10)
深度学习在自然语言处理领域取得了显著的成就,为文本分类、情感分析、机器翻译、问答系统等任务提供了强大的解决方案。RNN、LSTM、GRU 等模型能够有效地处理文本数据中的序列信息,而 Transformers 库等工具则为快速构建高效的自然语言处理模型提供了便利。然而,自然语言处理仍然面临着语言的歧义性、语义理解的复杂性等挑战,需要不断探索新的解决方案。原创 2024-10-23 09:00:00 · 3037 阅读 · 59 评论 -
深度学习(三)在计算机视觉领域的璀璨应用(3/10)
深度学习在计算机视觉领域的应用已经取得了令人瞩目的成就,从图像分类、目标检测、图像分割到对抗生成网络的图像生成、风格迁移以及在自动驾驶、安防监控等实际场景中的应用,都展示了其强大的能力。不同的卷积神经网络架构各有特点,在性能和效率上存在差异,需要根据具体任务和计算资源进行选择。未来,深度学习在计算机视觉领域将朝着提升模型可解释性、深化跨域学习和迁移学习、发展 3D 计算机视觉以及突破视频理解等方向发展,同时也将在智能家居、医疗健康、工业制造、教育娱乐等领域不断拓展应用。原创 2024-10-23 08:00:00 · 1575 阅读 · 0 评论 -
深度学习(二)框架与工具:开启智能未来之门(2/10)
深度学习框架和工具在人工智能领域中发挥着至关重要的作用。通过对主流深度学习框架的深入剖析,我们了解到不同框架在模型构建、训练效率、代码可读性等方面各有优劣。同时,数据预处理工具和模型可视化工具也为深度学习模型的开发和优化提供了有力支持。# 定义一个简单的神经网络# 创建模型实例# 定义损失函数和优化器# 模拟输入数据# 训练模型这个代码案例展示了如何使用 PyTorch 构建一个简单的神经网络,并进行训练。原创 2024-10-22 15:19:30 · 3957 阅读 · 117 评论 -
深度学习(一)基础:神经网络、训练过程与激活函数(1/10)
深度学习是一种基于人工神经网络的学习算法,它通过构建多层的网络结构来学习数据的高层特征表示。与传统的机器学习方法相比,深度学习能够自动提取特征,减少了人工干预,提高了模型的性能和泛化能力。原创 2024-10-22 14:58:58 · 1679 阅读 · 3 评论 -
深度学习:开启人工智能的新纪元
使用库和预训练的BERT模型来实现文本摘要:python# 创建摘要管道# 长文本# 生成摘要# 打印摘要请注意,这些代码案例需要相应的库安装在你的Python环境中。你可以使用pip命令来安装它们,例如:bash请根据你的具体需求和环境调整代码。这些案例仅用于演示目的,实际应用中可能需要更复杂的实现。深度学习作为人工智能领域的一个重要分支,已经对社会产生了深远的影响。医疗诊断:深度学习在医疗诊断中的应用包括图像识别、疾病预测、药物发现等。原创 2024-10-20 23:54:44 · 2649 阅读 · 20 评论 -
视觉识别技术:开启智能视觉新时代
视觉识别技术,通常被称为计算机视觉,是指使用计算机模拟人类视觉系统来解释和理解图像和视频数据的过程。这项技术涉及到图像的采集、处理、分析和解释,以识别和理解场景中的对象、事件和活动。视觉识别技术的核心在于能够从视觉世界中提取有用的信息,并将其转化为可操作的数据。视觉识别系统 (简称VI,英文Visual Identity的缩写 )是运用系统的、统一的视觉符号系统。视觉识别是静态的识别符号具体化、视觉化的传达形式,项目最多,层面最广,效果更直接。视觉识别系统属于CIS中的VI,用完整、体系的视觉传达体系。原创 2024-10-19 15:57:55 · 7448 阅读 · 81 评论 -
机器学习与神经网络:诺贝尔物理学奖的新篇章
2024年诺贝尔物理学奖的颁发给机器学习与神经网络领域的科学家,不仅是对这一领域研究者成就的认可,更是对跨学科研究重要性的极大强调。这一奖项的颁发,凸显了物理学深刻洞见与计算机科学创新结合的巨大能量,也表明了科学研究的未来趋势——跨学科融合与合作。人工智能时代为程序员带来了新的挑战和机遇。通过发展复杂系统设计能力、跨学科知识整合能力和与AI协作的能力,程序员可以保持并提升自身的核心竞争力。同时,持续学习和明智的职业规划将帮助程序员在人机协作模式下实现职业发展。原创 2024-10-14 12:00:00 · 3663 阅读 · 98 评论 -
机器学习:开启智能未来的钥匙
机器学习作为人工智能的核心方法,通过分析数据中的隐藏规律,让计算机从中获取新的经验和知识,不断提升和改善自身性能,从而像人一样根据所学知识做出决策。机器学习涉及概率论、统计学、微积分、代数学、算法复杂度理论等多门学科,是一门多领域交叉学科。其应用范围极为广泛,涵盖自然语言处理、图像识别、推荐系统、金融风控、医学诊断、智能制造等众多领域。在自然语言处理方面,可用于文本分类、机器翻译、语音识别等。例如谷歌翻译通过深度学习模型实现多语言自动翻译。在图像识别领域,包括人脸识别、物体识别、手写数字识别等。原创 2024-10-16 20:00:00 · 2320 阅读 · 5 评论 -
《人工智能:CSDN 平台上的璀璨之星》
机器学习是一种让计算机系统具备从数据中学习的能力,并通过学习不断优化和改进性能的技术。它主要分为监督学习、无监督学习和强化学习三种类型。在监督学习中,通过已标记的数据进行训练,学习输入数据与输出标签之间的关系,以预测未知数据的标签。例如,在垃圾邮件检测中,通过已标记的 “垃圾邮件” 和 “非垃圾邮件” 数据来训练模型,从而对新邮件进行分类。无监督学习则处理未标记的数据,探索数据之间的关系和结构。常见的无监督学习技术有聚类和主成分分析等。例如,将数据划分为多个不同的聚类,以发现数据中的潜在模式。原创 2024-10-16 20:00:00 · 4988 阅读 · 117 评论 -
机器学习框架
机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。通过机器学习,计算机可以识别模式、做出预测、并执行复杂的任务,如图像识别、自然语言处理、推荐系统等。随着数据量的爆炸性增长和计算能力的提高,机器学习已经成为推动技术创新的关键因素,广泛应用于金融、医疗、教育、交通等多个行业。机器学习框架是一种软件库或工具集,它为机器学习算法的开发、部署和维护提供了一套完整的解决方案。这些框架通常包括数据预处理、模型训练、评估和部署等功能,旨在简化机器学习工作流程并提高开发效率。原创 2024-09-29 23:37:46 · 2342 阅读 · 20 评论 -
AI模型:全能与专精的较量与未来潜力探讨
全能型AI模型与专精型AI模型各有利弊,它们在未来的市场和应用前景都有广阔的空间。在追求全能的同时,我们也要关注AI模型的专精化和可扩展性。同时,遵循道德规范和法律限制,确保AI技术的合理使用,为人类社会带来更多福祉。在未来的发展中,我们有理由相信,AI技术将不断突破边界,助力我国科技创新和产业升级。原创 2024-08-29 18:09:20 · 1184 阅读 · 21 评论 -
人工智能时代,程序员如何保持核心竞争力?
人工智能时代为程序员带来了新的挑战和机遇。通过发展复杂系统设计能力、跨学科知识整合能力和与AI协作的能力,程序员可以保持并提升自身的核心竞争力。同时,持续学习和明智的职业规划将帮助程序员在人机协作模式下实现职业发展。让我们一起拥抱AI时代,不断进化,成为更优秀的程序员。1、人工智能、机器学习、深度学习:技术革命的深度解析2、GPT-5:人工智能的新篇章,未来已来3、人工智能对我们的生活影响有多大?4、防范AI诈骗:技术、教育与法律的共同防线5、详细的人工智能学习路线和资料推荐。原创 2024-08-11 02:16:16 · 9412 阅读 · 142 评论 -
深度解读李彦宏的“不要卷模型,要卷应用”
李彦宏的“不要卷模型,要卷应用”是对AI技术发展的深刻洞察。AI技术的未来在于应用,而非单纯追求模型的复杂度和性能。在这个过程中,我们要避免陷入追求规模的陷阱,而是专注于提升用户体验和实现应用的实际效果。在2024世界人工智能大会的舞台上,李彦宏的“不要卷模型,要卷应用”言论犹如一石激起千层浪,引发了业界对AI技术发展路径的深思。本文将深入探讨这一观点,分析AI技术应用场景、避免超级应用陷阱的策略,以及个性化智能体开发的重要性。AI技术在教育领域的应用,主要体现在个性化教学和智能辅导上。原创 2024-07-13 18:42:04 · 970 阅读 · 3 评论 -
AI在创造还是毁掉音乐?
最近一个月,轮番上线的音乐大模型,一举将素人生产音乐的门槛降到了最低,并掀起了音乐圈会不会被AI彻底颠覆的讨论。短暂的兴奋后,AI产品的版权归属于谁,创意产业要如何在AI的阴影下生长,都在被更多理性的目光审视。目前,AI生成音乐领域确实呈现出一些领先企业和大型科技公司的竞争态势。原创 2024-07-01 23:39:10 · 896 阅读 · 0 评论 -
人工智能、机器学习、深度学习:技术革命的深度解析
人工智能是一个广泛的概念,它涵盖了使机器执行通常需要人类智能的任务的能力。这包括但不限于学习、推理、解决问题、知识理解、语言识别、视觉感知、运动和操控。机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并做出决策或预测,而不需要进行明确的编程。深度学习是机器学习的一个子领域,它使用多层神经网络来模拟人脑处理信息的方式。人工智能、机器学习和深度学习是当今科技领域最具活力和潜力的三个领域。它们的发展不仅推动了技术的进步,也为我们提供了解决复杂问题的新方法。原创 2024-06-05 00:00:00 · 4533 阅读 · 62 评论 -
防范AI诈骗:技术、教育与法律的共同防线
其中,利用AI技术进行的诈骗行为,如AI换脸、AI换声等,给人们的财产安全带来了威胁。然而,技术防范并非万能,还需要结合教育、法律等其他措施,共同构建一个全面的防范体系。AI换脸技术,也称为深度伪造(Deepfake),通过深度学习算法,可以将一个人的面部特征映射到另一个人的面部,从而生成逼真的视频。这些工具可以分析视频内容的不一致性,如像素级别的异常、面部表情的不自然等,以识别出AI生成的内容。对于AI换声技术,可以开发声音识别系统,通过分析声音的频谱特性、语调变化等,来识别合成声音和真实声音的差异。原创 2024-06-04 00:00:00 · 1271 阅读 · 13 评论 -
人工智能对我们的生活影响有多大?
人工智能的影响是多方面的,它为普通人带来了便利和机遇,同时也带来了挑战和问题,如就业变化、隐私保护、伦理问题等。随着AI技术的不断发展,普通人需要适应这些变化,同时也需要社会、政府和企业共同努力,确保AI技术的健康发展和应用。人工智能的发展对国家的影响是复杂多维的,它为国家带来了巨大的机遇,同时也带来了挑战。这些只是人工智能应用的一些例子,实际上,随着技术的发展,人工智能的应用领域正在不断扩展,新的应用场景也在不断涌现。人工智能(AI)是一个广泛且不断发展的领域,它涵盖了多个子领域和应用。原创 2024-05-30 16:47:41 · 3456 阅读 · 8 评论 -
在百模大战中AI行业发展有何新趋势?
"百模大战"这个术语通常是指在人工智能领域,这个术语强调了AI领域中模型数量的多样性和竞争的激烈程度,同时也暗示了这一领域正在快速进步和发展,尤其是大型机器学习模型和深度学习模型的竞争。在百模大战中,AI行业的发展正在经历前所未有的变革。这场竞争不仅推动了AI技术的快速发展,也揭示了AI行业的新趋势。这些趋势不仅影响着我们如何看待和使用AI,也预示着AI未来的发展方向。在这个快速发展的领域,了解这些新趋势对于理解AI行业的未来走向至关重要。现在让我们一起探讨在百模大战中AI行业发展有何新趋势?原创 2024-05-30 00:00:00 · 809 阅读 · 1 评论 -
详细的人工智能学习路线和资料推荐
人工智能(AI)是一个广泛而深入的领域,涵盖了多个子领域,如机器学习、深度学习、自然语言处理、计算机视觉等。原创 2024-05-22 00:00:00 · 1379 阅读 · 2 评论 -
如何利用AI提高内容生产效率?
AI 技术可以分析用户的行为数据和反馈数据,帮助内容创作者优化内容的质量和形式。通过分析数据,可以了解用户偏好的主题、格式和长度,根据用户的需求进行内容创作和调整,提高内容的吸引力和参与度。通过分析实时数据,可以发现用户的偏好变化和需求变化,及时调整内容的创作和发布计划,提高内容的吸引力和时效性。通过对用户行为和反馈数据的分析,可以发现热门话题和潜在的内容需求,帮助内容创作者调整创作方向,提供更符合用户期待的内容。根据用户的喜好和偏好,系统可以自动推送相关的文章、视频、音频等内容,提高内容的曝光和点击率。原创 2024-05-17 00:00:00 · 1482 阅读 · 0 评论 -
解锁AI写作新纪元的文心一言指令
"文心一言" 通常指的是一种简洁、深刻且富有启发性的言辞或表达。当你提到“文心一言指令”时,我理解为可能是在寻求一种指导或灵感,以产生具有文学价值或深刻意义的简短语句。观察与反思:首先,观察你的周围环境或内心感受。从一个小细节、一种情感或一种现象出发,进行深入反思。捕捉瞬间:尝试捕捉那些让你感到惊讶、感动或深思的瞬间。这些瞬间往往蕴含着丰富的情感和深刻的哲理。简化表达:尽量用简洁的语言表达你的观察和思考。避免冗长和复杂的句子结构,让言辞更加精炼和有力。修辞运用。原创 2024-05-13 23:14:52 · 1713 阅读 · 2 评论 -
深度学习知识点全面总结
深度学习是一种人工智能技术,它模仿人脑神经网络的工作方式,通过大量的数据和计算来自动学习和识别模式。原创 2024-05-12 23:26:06 · 1154 阅读 · 0 评论 -
与AI对话,如何写好prompt?
写好prompt的关键是让AI明确任务要求,并提供足够的背景信息和指导,以使其能够回答问题或提供有用的信息。原创 2024-05-10 22:16:31 · 1711 阅读 · 0 评论 -
利用AI提高内容生产效率的五个方案
利用AI可以提高内容生产效率的关键在于自动化和智能化。通过将AI技术应用于内容生产的不同环节,可以节省时间、提高质量,并为内容创作者提供更多洞察和创造力的空间。原创 2024-05-10 21:46:30 · 1106 阅读 · 0 评论 -
目前国内AI大厂大模型列表优缺点、原理、使用、案例和注意事项
目前国内的AI大厂主要包括阿里巴巴、腾讯、百度、华为、小米等,附加一个智谱(个人觉得很不错的大模型)。下面将分别列出各大厂的大模型列表,并介绍它们的优缺点、原理、使用、案例和注意事项。原创 2024-05-06 00:15:00 · 9439 阅读 · 0 评论 -
OneFlow深度学习框原理、用法、案例和注意事项
本文将基于OneFlow深度学习框架,详细介绍其原理、用法、案例和注意事项。OneFlow是由中科院计算所自动化研究所推出的深度学习框架,专注于高效、易用和扩展性强。它提供了一种类似于深度学习库的接口,可以用于构建神经网络模型,并提供了训练和推理的功能。现在让我们开始深入了解OneFlow。原创 2024-05-05 00:00:00 · 1075 阅读 · 0 评论 -
Dreamfusion(梦境融合)原理、用法、案例和注意事项
Dreamfusion是一种利用虚拟现实技术与梦境结合的创新工具,可以扩展人类体验和意识的边界。通过超现实体验、创意激发、潜意识探索和心理疗愈等功能,Dreamfusion为用户提供了一种全新的体验和认知方式。然而,在使用Dreamfusion时,用户需要注意睡眠环境、使用时间、健康状况、个人隐私和使用目的等事项,以确保安全和有效的使用。原创 2024-05-05 00:15:00 · 1415 阅读 · 0 评论 -
机器学习之sklearn基础教程
在本教程中,我们介绍了Sklearn的基础知识,包括安装、数据预处理、选择模型、训练模型、评估模型和模型持久化。这只是一个简单的入门教程,Sklearn还有许多其他功能等待您去探索。要深入学习Sklearn,您可以阅读官方文档,参加在线课程或阅读相关书籍。原创 2024-05-03 15:44:40 · 881 阅读 · 1 评论