一、前言
维度建模(dimensional modeling) 是数据仓库建设中的一种数据建模方法,Kimball 最先提出这一概念。其最简单的描述就是,按照事实表、维度表来构建数据仓库、数据集市,这种方法最被人广泛知晓的名字就是 星型模式(Star-Schema)。
实体关系(E-R)建模:通常用于为单位的所有进程创建一个复杂的模型,这种方法已被证实在创建高效的 联机事务处理 (OLTP) 系统 方面很有效;相反,维度建模针对零散的业务进程创建个别的模型。
例如,销售信息可以创建为一个模型,库存可以创建为另一个模型,而客户帐户也可以创建为另一个模型。每个模型捕获事实数据表中的事实,以及那些事实在链接到事实数据表的维度表中的属性。由这些排列产生的架构称为 星型架构或雪花型架构,已被证实在数据仓库设计中很有效。
维度建模将信息组织到结构中,这些结构通常对应于分析者希望对数据仓库数据使用的查询方法。如:2024年第三季度华东大区的家电总销售额是多少?表示使用三个维度(产品、地区、时间)指定要汇总的信息。
二、优点
1、星型模式之所以广泛被使用,在于针对各个维作了大量的预处理,如按照维进行预先的统计、分类、排序等。
通过这些预处理,能够极大的提升数据仓库的处理能力。特别是针对 3NF 的建模方法,星型模式在性能上占据明显的优势。
2、同时,维度建模法的另外一个优点是,维度建模非常直观,紧紧围绕着业务模型,可以直观的